39 research outputs found

    FOXP1 is a regulator of quiescence in healthy human CD4 +

    No full text
    The forkhead box P1 (FOXP1) transcription factor has been shown to regulate the generation and maintenance of quiescent naĂŻve murine T cells. In humans, FOXP1 expression has been correlated with overall survival in patients with peripheral T-cell lymphoma (PTCL), although its regulatory role in T-cell function is currently unknown. We found that FOXP1 is normally expressed in all human leukocyte subpopulations. Focusing on primary human CD4+ T cells, we show that nuclear expression of FOXP1 predominates in naĂŻve cells with significant downregulation detected in memory cells from blood and tonsils. FOXP1 is repressed following in vitro T-cell activation of naĂŻve T cells, and later re-established in memory CD4+ T cells, albeit at lower levels. DNA methylation analysis revealed that epigenetic mechanisms participate in regulating the human FOXP1 gene. ShRNA-mediated FOXP1 repression induces CD4+ T cells to enter the cell cycle, acquire memory-like markers and upregulate helper T-cell differentiation genes. In patients with lymphoproliferative disorders, FOXP1 expression is constitutionally repressed in the clonal T cells in parallel with overexpression of helper T-cell differentiation genes. Collectively, these data identify FOXP1 as an essential transcriptional regulator for primary human CD4+ T cells and suggest its potential important role in the development of PTCL.SCOPUS: ar.jFLWINinfo:eu-repo/semantics/publishe

    Mutual diffusion occurring at the interface between La0.6Sr0.4Co0.8Fe0.2O3 cathode and Gd-doped ceria electrolyte during IT-SOFC cell preparation

    No full text
    The microstructure and local chemistry of the interface between the screen-printed La0.6Sr0.4Co0.8Fe0.2O3 (LSCF) thin film cathode and Gd-doped ceria (GDC) electrolyte substrate have been investigated. Elemental distribution analyses, by energy-dispersive X-ray spectroscopy operated in scanning transmission electron microscopy (STEM) mode, illustrate that all constituent elements in GDC and LSCF mutually diffuse across the LSCF/GDC interface, with equal diffusion length. This leads to the formation of mutual diffusion zones at the LSCF/GDC interfaces, with the resultant mixture of diffusing ions being associated with specific valence state changes, as verified by STEM electron energy loss spectroscopy analyses. Moreover, this mutual diffusion can result in microstructural changes, where superstructure formation is accompanied by enhancement of oxygen vacancy ordering at this region. Such mutual diffusion and associated microstructure evolution is considered to be detrimental to fuel cell efficiency and should be suppressed by lowering cell fabrication temperatures

    Optimizing solid oxide fuel cell cathode processing route for intermediate temperature operation

    No full text
    For Solid Oxide Fuel Cells (SOFCs) to become an economically attractive energy conversion technology suitable materials which allow operation at lower temperatures, while retaining cell performance, must be developed. At the same time, the cell components must be inexpensive - requiring both low-priced raw material and cost-effective production techniques
    corecore