22 research outputs found

    A negative screen for mutations in calstabin 1 and 2 genes in patients with dilated cardiomyopathy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Calstabins 1 and 2 bind to Ryanodine receptors regulating muscle excitation-contraction coupling. Mutations in Ryanodine receptors affecting their interaction with calstabins lead to different cardiac pathologies. Animal studies suggest the involvement of calstabins with dilated cardiomyopathy.</p> <p>Results</p> <p>We tested the hypothesis that calstabins mutations may cause dilated cardiomyopathy in humans screening 186 patients with idiopathic dilated cardiomyopathy for genetic alterations in calstabins 1 and 2 genes (<it>FKBP12 </it>and <it>FKBP12.6)</it>. No missense variant was found. Five no-coding variations were found but not related to the disease.</p> <p>Conclusions</p> <p>These data corroborate other studies suggesting that mutations in <it>FKBP12 </it>and <it>FKBP12.6 </it>genes are not commonly related to cardiac diseases.</p

    The Mitochondrial Ca(2+) Uniporter: Structure, Function, and Pharmacology.

    Get PDF
    Mitochondrial Ca(2+) uptake is crucial for an array of cellular functions while an imbalance can elicit cell death. In this chapter, we briefly reviewed the various modes of mitochondrial Ca(2+) uptake and our current understanding of mitochondrial Ca(2+) homeostasis in regards to cell physiology and pathophysiology. Further, this chapter focuses on the molecular identities, intracellular regulators as well as the pharmacology of mitochondrial Ca(2+) uniporter complex

    FKBP12 Activates the Cardiac Ryanodine Receptor Ca2+-Release Channel and Is Antagonised by FKBP12.6

    Get PDF
    Changes in FKBP12.6 binding to cardiac ryanodine receptors (RyR2) are implicated in mediating disturbances in Ca2+-homeostasis in heart failure but there is controversy over the functional effects of FKBP12.6 on RyR2 channel gating. We have therefore investigated the effects of FKBP12.6 and another structurally similar molecule, FKBP12, which is far more abundant in heart, on the gating of single sheep RyR2 channels incorporated into planar phospholipid bilayers and on spontaneous waves of Ca2+-induced Ca2+-release in rat isolated permeabilised cardiac cells. We demonstrate that FKBP12 is a high affinity activator of RyR2, sensitising the channel to cytosolic Ca2+, whereas FKBP12.6 has very low efficacy, but can antagonise the effects of FKBP12. Mathematical modelling of the data shows the importance of the relative concentrations of FKBP12 and FKBP12.6 in determining RyR2 activity. Consistent with the single-channel results, physiological concentrations of FKBP12 (3 µM) increased Ca2+-wave frequency and decreased the SR Ca2+-content in cardiac cells. FKBP12.6, itself, had no effect on wave frequency but antagonised the effects of FKBP12

    Pooled analysis of WHO Surgical Safety Checklist use and mortality after emergency laparotomy

    Get PDF
    Background The World Health Organization (WHO) Surgical Safety Checklist has fostered safe practice for 10 years, yet its place in emergency surgery has not been assessed on a global scale. The aim of this study was to evaluate reported checklist use in emergency settings and examine the relationship with perioperative mortality in patients who had emergency laparotomy. Methods In two multinational cohort studies, adults undergoing emergency laparotomy were compared with those having elective gastrointestinal surgery. Relationships between reported checklist use and mortality were determined using multivariable logistic regression and bootstrapped simulation. Results Of 12 296 patients included from 76 countries, 4843 underwent emergency laparotomy. After adjusting for patient and disease factors, checklist use before emergency laparotomy was more common in countries with a high Human Development Index (HDI) (2455 of 2741, 89.6 per cent) compared with that in countries with a middle (753 of 1242, 60.6 per cent; odds ratio (OR) 0.17, 95 per cent c.i. 0.14 to 0.21, P <0001) or low (363 of 860, 422 per cent; OR 008, 007 to 010, P <0.001) HDI. Checklist use was less common in elective surgery than for emergency laparotomy in high-HDI countries (risk difference -94 (95 per cent c.i. -11.9 to -6.9) per cent; P <0001), but the relationship was reversed in low-HDI countries (+121 (+7.0 to +173) per cent; P <0001). In multivariable models, checklist use was associated with a lower 30-day perioperative mortality (OR 0.60, 0.50 to 073; P <0.001). The greatest absolute benefit was seen for emergency surgery in low- and middle-HDI countries. Conclusion Checklist use in emergency laparotomy was associated with a significantly lower perioperative mortality rate. Checklist use in low-HDI countries was half that in high-HDI countries.Peer reviewe

    Global variation in anastomosis and end colostomy formation following left-sided colorectal resection

    Get PDF
    Background End colostomy rates following colorectal resection vary across institutions in high-income settings, being influenced by patient, disease, surgeon and system factors. This study aimed to assess global variation in end colostomy rates after left-sided colorectal resection. Methods This study comprised an analysis of GlobalSurg-1 and -2 international, prospective, observational cohort studies (2014, 2016), including consecutive adult patients undergoing elective or emergency left-sided colorectal resection within discrete 2-week windows. Countries were grouped into high-, middle- and low-income tertiles according to the United Nations Human Development Index (HDI). Factors associated with colostomy formation versus primary anastomosis were explored using a multilevel, multivariable logistic regression model. Results In total, 1635 patients from 242 hospitals in 57 countries undergoing left-sided colorectal resection were included: 113 (6·9 per cent) from low-HDI, 254 (15·5 per cent) from middle-HDI and 1268 (77·6 per cent) from high-HDI countries. There was a higher proportion of patients with perforated disease (57·5, 40·9 and 35·4 per cent; P < 0·001) and subsequent use of end colostomy (52·2, 24·8 and 18·9 per cent; P < 0·001) in low- compared with middle- and high-HDI settings. The association with colostomy use in low-HDI settings persisted (odds ratio (OR) 3·20, 95 per cent c.i. 1·35 to 7·57; P = 0·008) after risk adjustment for malignant disease (OR 2·34, 1·65 to 3·32; P < 0·001), emergency surgery (OR 4·08, 2·73 to 6·10; P < 0·001), time to operation at least 48 h (OR 1·99, 1·28 to 3·09; P = 0·002) and disease perforation (OR 4·00, 2·81 to 5·69; P < 0·001). Conclusion Global differences existed in the proportion of patients receiving end stomas after left-sided colorectal resection based on income, which went beyond case mix alone

    Multiple ryanodine receptor subtypes and heterogeneous ryanodine receptor-gated Ca 2+ stores in pulmonary arterial smooth muscle cells

    No full text
    Ryanodine receptors (RyRs) of pulmonary arterial smooth muscle cells (PASMCs) play important roles in major physiological processes such as hypoxic pulmonary vasoconstriction and perinatal pulmonary vasodilatation. Recent studies show that three subtypes of RyRs are coexpressed and RyR-gated Ca 2+ stores are distributed heterogeneously in systemic vascular myocytes. However, the molecular identity and subcellular distribution of RyRs have not been examined in PASMCs. In this study we detected mRNA and proteins of all three subtypes in rat intralobar PASMCs using RT-PCR and Western blot. Quantitative real-time RT-PCR showed that RyR2 mRNA was most abundant, ∼15-20 times more than the other two subtypes. Confocal fluorescence microscopy revealed that RyRs labeled with BODIPY TR-X ryanodine were localized in the peripheral and perinuclear regions and were colocalized with sarcoplasmic reticulum labeled with Fluo-5N. Immunostaining showed that the subsarcolemmal regions exhibited clear signals of RyR1 and RyR2, whereas the perinuclear compartments contained mainly RyR1 and RyR3. Ca 2+ sparks were recorded in both regions, and their activities were enhanced by a subthreshold concentration of caffeine or by endothelin-1, indicating functional RyR-gated Ca 2+ stores. Moreover, 18% of the perinuclear sparks were prolonged [full duration/half-maximum (FDHM) = 193.3 ± 22.6 ms] with noninactivating kinetics, in sharp contrast to the typical fast inactivating Ca 2+ sparks (FDHM = 44.6 ± 3.2 ms) recorded in the same PASMCs. In conclusion, multiple RyR subtypes are expressed differentially in peripheral and perinuclear RyR-gated Ca 2+ stores; the molecular-complexity and spatial heterogeneity of RyRs may facilitate specific Ca 2+ regulation of cellular functions in PASMCs. Copyright © 2005 the American Physiological Society.link_to_subscribed_fulltex

    Acetylation Pharmacogenetics and Renal Function in Diabetes Mellitus Patients

    No full text
    Activities of human hepatic drug metabolizing enzymes N-acetyl transferase (NATS) had earlier been recognized as a cause of inter-individual variation in the metabolism of drugs. Therefore acetylation of many drugs in human exhibit genetic polymorphism. The aim of the study was to investigate if acetylator status predispose diabetic mellitus patients more to the complications of renal disease, One hundred and twenty (120) diabetics consisting of (50) Type 1 (T1) and 70 Type 2 (T2) diabetes mellitus patients and 100 healthy individuals as controls were classified as slow or rapid acetylator using sulphamethazine (SMZ) as an in vivo probe. The percentage acetylation, recovery of SMZ, creatinine clearance and presence of urinary albumin were determined. A significant difference (P < 0.05) was observed in the percentage of SMZ acetylated between slow and rapid acetylators in control, T1 and T2 subjects. The ratios of slow to rapid acetylators for T1, T2 and control subjects were 1:4, 3:2 and 2:3 respectively. No significant differences were observed in the percentage of SMZ recovered in the urine of slow and rapid acetylators that are diabetics. The difference in creatinine clearance of slow and rapid acetylators in T1 and T2 were significant (P < 0.05). 29% out of 120 (24.2%) diabetics (T1 and T2) exhibited albuminuria out of which 25 (86.2%) had slow acetylator status. These findings suggest that slow acetylator status in diabetes mellitus could be a predisposing factor in the development of renal complications. This underscores the need for a rapid pharmacogenetic testing and therapeutic drug monitoring in such patients. However this inference could be further validated with a larger sample size
    corecore