147 research outputs found

    The physical and mental health of a large military cohort: baseline functional health status of the Millennium Cohort

    Get PDF
    <p>Abstract</p> <p>Background:</p> <p>The US military is currently involved in large, lengthy, and complex combat operations around the world. Effective military operations require optimal health of deployed service members, and both mental and physical health can be affected by military operations.</p> <p>Methods:</p> <p>Baseline data were collected from 77,047 US service members during 2001–2003 as part of a large, longitudinal, population-based military health study (the Millennium Cohort Study). The authors calculated unadjusted, adjusted, and weighted means for the Medical Outcomes Study Short Form 36-item Survey for Veterans physical (PCS) and mental component summary (MCS) scores over a variety of demographic and military characteristics at baseline.</p> <p>Results:</p> <p>The unadjusted mean PCS and MCS scores for this study were 53.4 (95% confidence interval: 53.3–53.4) and 52.8 (95% confidence interval: 52.7–52.9). Average PCS and MCS scores were slightly more favorable in this military sample compared to those of the US general population of the same age and sex. Factors independently associated with more favorable health status included male gender, being married, higher educational attainment, higher military rank, and Air Force service. Combat specialists had similar health status compared to other military occupations. Having been deployed to Southwest Asia, Bosnia, or Kosovo between 1998 and 2000 was not associated with diminished health status.</p> <p>Conclusion:</p> <p>The baseline health status of this large population-based military cohort is better than that of the US general population of the same age and sex distribution over the same time period, especially in older age groups. Deployment experiences during the period of 1998–2001 were not associated with decreased health status. These data will serve as a useful reference for other military health studies and for future longitudinal analyses.</p

    Both introns and long 3′-UTRs operate as cis-acting elements to trigger nonsense-mediated decay in plants

    Get PDF
    Nonsense-mediated mRNA decay (NMD) is a eukaryotic quality control mechanism that identifies and eliminates aberrant mRNAs containing a premature termination codon (PTC). Although, key trans-acting NMD factors, UPF1, UPF2 and UPF3 are conserved in yeast and mammals, the cis-acting NMD elements are different. In yeast, short specific sequences or long 3′-untranslated regions (3′-UTRs) render an mRNA subject to NMD, while in mammals' 3′-UTR located introns trigger NMD. Plants also possess an NMD system, although little is known about how it functions. We have elaborated an agroinfiltration-based transient NMD assay system and defined the cis-acting elements that mediate plant NMD. We show that unusually long 3′-UTRs or the presence of introns in the 3′-UTR can subject mRNAs to NMD. These data suggest that both long 3′-UTR-based and intron-based PTC definition operated in the common ancestors of extant eukaryotes (stem eukaryotes) and support the theory that intron-based NMD facilitated the spreading of introns in stem eukaryotes. We have also identified plant UPF1 and showed that tethering of UPF1 to either the 5′- or 3′-UTR of an mRNA results in reduced transcript accumulation. Thus, plant UPF1 might bind to mRNA in a late, irreversible phase of NMD

    Transcriptional Response of Zebrafish Embryos Exposed to Neurotoxic Compounds Reveals a Muscle Activity Dependent hspb11 Expression

    Get PDF
    Acetylcholinesterase (AChE) inhibitors are widely used as pesticides and drugs. Their primary effect is the overstimulation of cholinergic receptors which results in an improper muscular function. During vertebrate embryonic development nerve activity and intracellular downstream events are critical for the regulation of muscle fiber formation. Whether AChE inhibitors and related neurotoxic compounds also provoke specific changes in gene transcription patterns during vertebrate development that allow them to establish a mechanistic link useful for identification of developmental toxicity pathways has, however, yet not been investigated. Therefore we examined the transcriptomic response of a known AChE inhibitor, the organophosphate azinphos-methyl (APM), in zebrafish embryos and compared the response with two non-AChE inhibiting unspecific control compounds, 1,4-dimethoxybenzene (DMB) and 2,4-dinitrophenol (DNP). A highly specific cluster of APM induced gene transcripts was identified and a subset of strongly regulated genes was analyzed in more detail. The small heat shock protein hspb11 was found to be the most sensitive induced gene in response to AChE inhibitors. Comparison of expression in wildtype, ache and sopfixe mutant embryos revealed that hspb11 expression was dependent on the nicotinic acetylcholine receptor (nAChR) activity. Furthermore, modulators of intracellular calcium levels within the whole embryo led to a transcriptional up-regulation of hspb11 which suggests that elevated intracellular calcium levels may regulate the expression of this gene. During early zebrafish development, hspb11 was specifically expressed in muscle pioneer cells and Hspb11 morpholino-knockdown resulted in effects on slow muscle myosin organization. Our findings imply that a comparative toxicogenomic approach and functional analysis can lead to the identification of molecular mechanisms and specific marker genes for potential neurotoxic compounds

    Transcriptome profiling of Pinus radiata juvenile wood with contrasting stiffness identifies putative candidate genes involved in microfibril orientation and cell wall mechanics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The mechanical properties of wood are largely determined by the orientation of cellulose microfibrils in secondary cell walls. Several genes and their allelic variants have previously been found to affect microfibril angle (MFA) and wood stiffness; however, the molecular mechanisms controlling microfibril orientation and mechanical strength are largely uncharacterised. In the present study, cDNA microarrays were used to compare gene expression in developing xylem with contrasting stiffness and MFA in juvenile <it>Pinus radiata </it>trees in order to gain further insights into the molecular mechanisms underlying microfibril orientation and cell wall mechanics.</p> <p>Results</p> <p>Juvenile radiata pine trees with higher stiffness (HS) had lower MFA in the earlywood and latewood of each ring compared to low stiffness (LS) trees. Approximately 3.4 to 14.5% out of 3, 320 xylem unigenes on cDNA microarrays were differentially regulated in juvenile wood with contrasting stiffness and MFA. Greater variation in MFA and stiffness was observed in earlywood compared to latewood, suggesting earlywood contributes most to differences in stiffness; however, 3-4 times more genes were differentially regulated in latewood than in earlywood. A total of 108 xylem unigenes were differentially regulated in juvenile wood with HS and LS in at least two seasons, including 43 unigenes with unknown functions. Many genes involved in cytoskeleton development and secondary wall formation (cellulose and lignin biosynthesis) were preferentially transcribed in wood with HS and low MFA. In contrast, several genes involved in cell division and primary wall synthesis were more abundantly transcribed in LS wood with high MFA.</p> <p>Conclusions</p> <p>Microarray expression profiles in <it>Pinus radiata </it>juvenile wood with contrasting stiffness has shed more light on the transcriptional control of microfibril orientation and the mechanical properties of wood. The identified candidate genes provide an invaluable resource for further gene function and association genetics studies aimed at deepening our understanding of cell wall biomechanics with a view to improving the mechanical properties of wood.</p

    The College News, 1923-01-24, Vol. 09, No. 13

    Get PDF
    Bryn Mawr College student newspaper. Merged with The Haverford News in 1968 to form the Bi-college News (with various titles from 1968 on). Published weekly (except holidays) during the academic year

    Functional hemizygosity in the human genome: direct estimate from twelve erythrocyte enzyme loci

    Full text link
    Cord blood samples from 2020 unrelated newborns were screened for levels of enzyme activity for twelve enzymes. The level of enzymatic activity for 100 determinations were consistent with the existence of an enzyme-deficiency allele. The frequency of deficiency alleles in the Black population (0.0071) was four times higher (after removal of the G6PD * A - variant) than in the Caucasian sample (0.0016). These frequencies are approximately double the frequency of rare electrophoretic mobility variants at similar loci in the same population. Given the number of functionally important loci in the human genome, these enzyme deficiency variants could constitute a significant health burden.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47620/1/439_2004_Article_BF00284477.pd

    Tracing marine cryptotephras in the North Atlantic during the last glacial period: Protocols for identification, characterisation and evaluating depositional controls

    Get PDF
    Tephrochronology is increasingly being utilised as a key tool for improving chronological models and correlating disparate palaeoclimatic sequences. For many sedimentary environments, however, there is an increased recognition that a range of processes may impart a delay in deposition and/or rework tephra. These processes can affect the integrity of tephra deposits as time-synchronous markers, therefore, it is crucial to assess their isochronous nature, especially when cryptotephras are investigated in a dynamic marine environment. A methodology for the identification and characterisation of marine cryptotephras alongside a protocol for assessing their integrity is outlined. This methodology was applied to a wide network of North Atlantic marine sequences covering the last glacial period. A diverse range of cryptotephra deposits were identified and, based on similarities in physical characteristics (e.g. glass shard concentration profiles and geochemical homogeneity/heterogeneity), indicative of common modes of tephra delivery and post depositional reworking, a deposit type classification scheme was defined. The presence and dominance of different deposit types within each core allowed an assessment of spatial and temporal controls on tephra deposition and preservation. Overall, isochronous horizons can be identified across a large portion of the North Atlantic due to preferential atmospheric dispersal patterns. However, the variable influence of ice-rafting processes and an interplay between the high eruptive frequency of Iceland and relatively lower sedimentation rates can also create complex tephrostratigraphies in this sector. Sites within a wide sector to the south and east of Iceland have the greatest potential to be repositories for isochronous horizons that can facilitate the synchronisation of palaeoclimatic records
    corecore