11 research outputs found

    Comparative Genome Analysis of Filamentous Fungi Reveals Gene Family Expansions Associated with Fungal Pathogenesis

    Get PDF
    Fungi and oomycetes are the causal agents of many of the most serious diseases of plants. Here we report a detailed comparative analysis of the genome sequences of thirty-six species of fungi and oomycetes, including seven plant pathogenic species, that aims to explore the common genetic features associated with plant disease-causing species. The predicted translational products of each genome have been clustered into groups of potential orthologues using Markov Chain Clustering and the data integrated into the e-Fungi object-oriented data warehouse (http://www.e-fungi.org.uk/). Analysis of the species distribution of members of these clusters has identified proteins that are specific to filamentous fungal species and a group of proteins found only in plant pathogens. By comparing the gene inventories of filamentous, ascomycetous phytopathogenic and free-living species of fungi, we have identified a set of gene families that appear to have expanded during the evolution of phytopathogens and may therefore serve important roles in plant disease. We have also characterised the predicted set of secreted proteins encoded by each genome and identified a set of protein families which are significantly over-represented in the secretomes of plant pathogenic fungi, including putative effector proteins that might perturb host cell biology during plant infection. The results demonstrate the potential of comparative genome analysis for exploring the evolution of eukaryotic microbial pathogenesis

    PLS1, a gene encoding a tetraspanin-like protein, is required for penetration of rice leaf by the fungal pathogen Magnaporthe grisea

    No full text
    We describe in this study punchless, a nonpathogenic mutant from the rice blast fungus M. grisea, obtained by plasmid-mediated insertional mutagenesis. As do most fungal plant pathogens, M. grisea differentiates an infection structure specialized for host penetration called the appressorium. We show that punchless differentiates appressoria that fail to breach either the leaf epidermis or artificial membranes such as cellophane. Cytological analysis of punchless appressoria shows that they have a cellular structure, turgor, and glycogen content similar to those of wild type before penetration, but that they are unable to differentiate penetration pegs. The inactivated gene, PLS1, encodes a putative integral membrane protein of 225 aa (Pls1p). A functional Pls1p-green fluorescent protein fusion protein was detected only in appressoria and was localized in plasma membranes and vacuoles. Pls1p is structurally related to the tetraspanin family. In animals, these proteins are components of membrane signaling complexes controlling cell differentiation, motility, and adhesion. We conclude that PLS1 controls an appressorial function essential for the penetration of the fungus into host leaves

    Somatic Practices: How Motion Analysis and Mind Images Work Hand in Hand in Dance

    Get PDF
    Somatic Practices are body-based movement practices that foreground self-awareness and a first person experience of moving. Increasingly, somatic practices are informing how dance is taught, created, and performed with many dancers turning towards somatics to ensure a healthy and holistic approach to dance. Several somatic practices draw on imagery as a source for moving, for stimulating a more sensorial engagement with movement and to encourage a sense of moving “naturally” and with respect for the “natural environment.” When somatic practices and the imagery that is important for many of these practices are coupled with motion analysis tools, the necessary processing of movement often requires an intervention that can disrupt the “natural” sense of moving somatically. This processing can thus appear to be at odds with a somatic approach to dance. However, there are many examples where motion analysis and mind images do work hand in hand in dance and can generate exciting new insights to the production, teaching, and making of dance. It is this intersection between somatic principles, imagery, and motion analysis tools that is the focus for this essay, which discusses projects that have explored and exploited the intersection between motion analysis, imagery, and somatic practices.The uploaded document is the pre-print final manuscript of the published article

    The Sesquiterpene Synthase from the Botrydial Biosynthetic Gene Cluster of the Phytopathogen Botrytis cinerea

    No full text
    The fungus Botrytis cinerea is the causal agent of the economically important gray mold disease that affects more than 200 ornamental and agriculturally important plant species. B. cinerea is a necrotrophic plant pathogen that secretes nonspecific phytotoxins, including the sesquiterpene botrydial and the polyketide botcinic acid. The region surrounding the previously characterized BcBOT1 gene has now been identified as the botrydial biosynthetic gene cluster. Five genes including BcBOT1 and BcBOT2 were shown by quantitative reverse transcription-PCR to be co-regulated through the calcineurin signaling pathway. Inactivation of the BcBOT2 gene, encoding a putative sesquiterpene cyclase, abolished botrydial biosynthesis, which could be restored by in trans complementation. Inactivation of BcBOT2 also resulted in overproduction of botcinic acid that was observed to be strain-dependent. Recombinant BcBOT2 protein converted farnesyl diphosphate to the parent sesquiterpene of the botrydial biosynthetic pathway, the tricyclic alcohol presilphiperfolan-8 -ol

    Genomics for Fungi

    No full text

    Global nutrient profiling by Phenotype MicroArrays: a tool complementing genomic and proteomic studies in conidial fungi*

    No full text
    Conidial fungi or molds and mildews are widely used in modern biotechnology as producers of antibiotics and other secondary metabolites, industrially important enzymes, chemicals and food. They are also important pathogens of animals including humans and agricultural crops. These various applications and extremely versatile natural phenotypes have led to the constantly growing list of complete genomes which are now available. Functional genomics and proteomics widely exploit the genomic information to study the cell-wide impact of altered genes on the phenotype of an organism and its function. This allows for global analysis of the information flow from DNA to RNA to protein, but it is usually not sufficient for the description of the global phenotype of an organism. More recently, Phenotype MicroArray (PM) technology has been introduced as a tool to characterize the metabolism of a (wild) fungal strain or a mutant. In this article, we review the background of PM applications for fungi and the methodic requirements to obtain reliable results. We also report examples of the versatility of this tool
    corecore