3,158 research outputs found

    Lightweight Adapter Tuning for Multilingual Speech Translation

    Full text link
    Adapter modules were recently introduced as an efficient alternative to fine-tuning in NLP. Adapter tuning consists in freezing pretrained parameters of a model and injecting lightweight modules between layers, resulting in the addition of only a small number of task-specific trainable parameters. While adapter tuning was investigated for multilingual neural machine translation, this paper proposes a comprehensive analysis of adapters for multilingual speech translation (ST). Starting from different pre-trained models (a multilingual ST trained on parallel data or a multilingual BART (mBART) trained on non-parallel multilingual data), we show that adapters can be used to: (a) efficiently specialize ST to specific language pairs with a low extra cost in terms of parameters, and (b) transfer from an automatic speech recognition (ASR) task and an mBART pre-trained model to a multilingual ST task. Experiments show that adapter tuning offer competitive results to full fine-tuning, while being much more parameter-efficient.Comment: Accepted at ACL-IJCNLP 202

    Pre-training for Speech Translation: CTC Meets Optimal Transport

    Full text link
    The gap between speech and text modalities is a major challenge in speech-to-text translation (ST). Different methods have been proposed to reduce this gap, but most of them require architectural changes in ST training. In this work, we propose to mitigate this issue at the pre-training stage, requiring no change in the ST model. First, we show that the connectionist temporal classification (CTC) loss can reduce the modality gap by design. We provide a quantitative comparison with the more common cross-entropy loss, showing that pre-training with CTC consistently achieves better final ST accuracy. Nevertheless, CTC is only a partial solution and thus, in our second contribution, we propose a novel pre-training method combining CTC and optimal transport to further reduce this gap. Our method pre-trains a Siamese-like model composed of two encoders, one for acoustic inputs and the other for textual inputs, such that they produce representations that are close to each other in the Wasserstein space. Extensive experiments on the standard CoVoST-2 and MuST-C datasets show that our pre-training method applied to the vanilla encoder-decoder Transformer achieves state-of-the-art performance under the no-external-data setting, and performs on par with recent strong multi-task learning systems trained with external data. Finally, our method can also be applied on top of these multi-task systems, leading to further improvements for these models. Code and pre-trained models are available at https://github.com/formiel/fairseq.Comment: ICML 2023 (oral presentation). This version fixed URLs, updated affiliations & acknowledgements, and improved formattin

    The optical spectrum of a large isolated polycyclic aromatic hydrocarbon: hexa-peri-hexabenzocoronene, C42H18

    Full text link
    The first optical spectrum of an isolated polycyclic aromatic hydrocarbon large enough to survive the photophysical conditions of the interstellar medium is reported. Vibronic bands of the first electronic transition of the all benzenoid polycyclic aromatic hydrocarbon hexa-peri-hexabenzocoronene were observed in the 4080-4530 Angstrom range by resonant 2-color 2-photon ionization spectroscopy. The strongest feature at 4264 Angstrom is estimated to have an oscillator strength of f=1.4x10^-3, placing an upper limit on the interstellar abundance of this polycyclic aromatic hydrocarbon at 4x10^12 cm^-2, accounting for a maximum of ~0.02% of interstellar carbon. This study opens up the possibility to rigorously test neutral polycyclic aromatic hydrocarbons as carriers of the diffuse interstellar bands in the near future.Comment: 9 pages, 1 figure. Fixed a typo on the frequency of the 'b' ban

    Re-entrance and entanglement in the one-dimensional Bose-Hubbard model

    Get PDF
    Re-entrance is a novel feature where the phase boundaries of a system exhibit a succession of transitions between two phases A and B, like A-B-A-B, when just one parameter is varied monotonically. This type of re-entrance is displayed by the 1D Bose Hubbard model between its Mott insulator (MI) and superfluid phase as the hopping amplitude is increased from zero. Here we analyse this counter-intuitive phenomenon directly in the thermodynamic limit by utilizing the infinite time-evolving block decimation algorithm to variationally minimize an infinite matrix product state (MPS) parameterized by a matrix size chi. Exploiting the direct restriction on the half-chain entanglement imposed by fixing chi, we determined that re-entrance in the MI lobes only emerges in this approximate when chi >= 8. This entanglement threshold is found to be coincident with the ability an infinite MPS to be simultaneously particle-number symmetric and capture the kinetic energy carried by particle-hole excitations above the MI. Focussing on the tip of the MI lobe we then applied, for the first time, a general finite-entanglement scaling analysis of the infinite order Kosterlitz-Thouless critical point located there. By analysing chi's up to a very moderate chi = 70 we obtained an estimate of the KT transition as t_KT = 0.30 +/- 0.01, demonstrating the how a finite-entanglement approach can provide not only qualitative insight but also quantitatively accurate predictions.Comment: 12 pages, 8 figure

    A general model for the identification of specific PAHs in the far-IR

    Get PDF
    Context. In the framework of the interstellar PAH hypothesis, far-IR skeletal bands are expected to be a fingerprint of single species in this class. Aims. A detailed model of the photophysics of interstellar PAHs is required for such single-molecule identification of their far-IR features in the presently available Infrared Space Observatory data and in those of the forthcoming Herschel Space Observatory mission. Methods. We modelled the detailed photophysics of a vast sample of species in different radiation fields, using a compendium of Monte-Carlo techniques and quantum-chemical calculations. This enabled us to validate the use of purely theoretical data and assess the expected accuracy and reliability of the resulting synthetic far-IR emission spectra. Results. We produce positions and intensities of the expected far-IR features which ought to be emitted by each species in the sample in the considered radiation fields. A composite emission spectrum for our sample is computed for one of the most favourable sources for detection, namely the Red Rectangle nebula. The resulting spectrum is compared with the estimated dust emission in the same source, to assess the dependence of detectability on key molecular parameters. Conclusions. Identifying specific PAHs from their far-IR features is going to be a difficult feat in general, still it may well be possible under favourable conditions.Comment: 14 pages, 9 figures + 18 pages of online appendix. Accepted for publication in A&A (09/06/2006

    Polycyclic aromatic hydrocarbon processing in interstellar shocks

    Full text link
    Context: PAHs appear to be an ubiquitous interstellar dust component but the effects of shocks waves upon them have never been fully investigated. Aims: To study the effects of energetic (~0.01-1 keV) ion (H, He and C) and electron collisions on PAHs in interstellar shock waves.Methods: We calculate the ion-PAH and electron-PAH nuclear and electronic interactions, above the threshold for carbon atom loss from a PAH, in 50-200 km/s shock waves in the warm intercloud medium. Results: Interstellar PAHs (Nc = 50) do not survive in shocks with velocities greater than 100 km/s and larger PAHs (Nc = 200) are destroyed for shocks with velocities greater/equal to 125 km/s. For shocks in the ~75 - 100 km/s range, where destruction is not complete, the PAH structure is likely to be severely denatured by the loss of an important fraction (20-40%) of the carbon atoms. We derive typical PAH lifetimes of the order of a few x10^8 yr for the Galaxy. These results are robust and independent of the uncertainties in some key parameters that have yet to be well-determined experimentally. Conclusions: The observation of PAH emission in shock regions implies that that emission either arises outside the shocked region or that those regions entrain denser clumps that, unless they are completely ablated and eroded in the shocked gas, allow dust and PAHs to survive in extreme environments.Comment: 19 pages, 11 figures, 3 tables, typos corrected and PAH acronym in the title substituted with full name to match version published in Astronomy and Astrophysic

    Revisiting 2D Numerical Models for the 19th century outbursts of η\eta Carinae

    Full text link
    We present here new results of two-dimensional hydrodynamical simulations of the eruptive events of the 1840s (the great) and the 1890s (the minor) eruptions suffered by the massive star η\eta Car. The two bipolar nebulae commonly known as the Homunculus and the little Homunculus were formed from the interaction of these eruptive events with the underlying stellar wind. As in previous work (Gonzalez et al. 2004a, 2004b), we assume here an interacting, nonspherical multiple-phase wind scenario to explain the shape and the kinematics of both Homunculi, but adopt a more realistic parametrization of the phases of the wind. During the 1890s eruptive event, the outflow speed {\it decreased} for a short period of time. This fact suggests that the little Homunculus is formed when the eruption ends, from the impact of the post-outburst η\eta Car wind (that follows the 1890s event) with the eruptive flow (rather than by the collision of the eruptive flow with the pre-outburst wind, as claimed in previous models; Gonzalez et al. 2004a, 2004b). Our simulations reproduce quite well the shape and the observed expansion speed of the large Homunculus. The little Homunculus (which is embedded within the large Homunculus) becomes Rayleigh-Taylor unstable and develop filamentary structures that resembles the spatial features observed in the polar caps. In addition, we find that the interior cavity between the two Homunculi is partially filled by material that is expelled during the decades following the great eruption. This result may be connected with the observed double-shell structure in the polar lobes of the η\eta Car nebula. Finally, as in previous work, we find the formation of tenuous, equatorial, high-speed features that seem to be related to the observed equatorial skirt of η\eta Car.Comment: accepted for publication in MNRA

    Type F congenital quadricuspid aortic valve: A very rare case diagnosed by 3-dimenional transoesophageal echocardiography

    Get PDF
    Congenital quadricuspid aortic valve (QAV) is a rare cardiac anomaly. Several different anatomical variations of a quadricuspid aortic valve have been described. Aortic regurgitation is the predominant valvular dysfunction associated with QAV and patients tend to present in their 5(th) or 6(th) decade of life. This anomaly is rarely picked up by transthoracic echocardiogram (TTE). A comprehensive transoesophageal echocardiography (TOE) study is more likely to diagnose it. We describe a very rare type of QAV - Type F in a 52-year-old lady who presented with symptoms of shortness of breath and pre-syncope. We include TOE images and intra-operative valve images
    corecore