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Re-entrance is a novel feature where the phase boundaries of a system exhibit a succession of
transitions between two phases A and B, like A-B-A-B, when just one parameter is varied mono-
tonically. This type of re-entrance is displayed by the 1D Bose Hubbard model between its Mott
insulator (MI) and superfluid phase as the hopping amplitude is increased from zero. Here we anal-
yse this counter-intuitive phenomenon directly in the thermodynamic limit by utilizing the infinite
time-evolving block decimation algorithm to variationally minimize an infinite matrix product state
(MPS) parameterized by a matrix size χ. Exploiting the direct restriction on the half-chain entan-
glement imposed by fixing χ, we determined that re-entrance in the MI lobes only emerges in this
approximate when χ ≥ 8. This entanglement threshold is found to be coincident with the ability an
infinite MPS to be simultaneously particle-number symmetric and capture the kinetic energy carried
by particle-hole excitations above the MI. Focussing on the tip of the MI lobe we then applied, for
the first time, a general finite-entanglement scaling analysis of the infinite order Kosterlitz-Thouless
critical point located there. By analysing χ’s up to a very moderate χ = 70 we obtained an estimate
of the KT transition as tKT = 0.30 ± 0.01, demonstrating the how a finite-entanglement approach
can provide not only qualitative insight but also quantitatively accurate predictions.

I. INTRODUCTION

Strong correlations in many-body quantum systems
are central to the appearance of numerous remarkable
phenomenon such as the fractional quantum effect [1]
and high-temperature superconductivity [2]. As such the
study of model Hamiltonians composed of spins, fermions
and bosons has played an crucial role in unravelling the
fundamental mechanisms underlying them [3, 4]. Re-
cently the relevance of these types of model systems has
been dramatically elevated by numerous seminal experi-
ments with cold atoms in optical lattices [5–11]. In the
simplest instances these experiments provided a clean
and highly controllable quantum degenerate atomic sys-
tem whose microscopic interactions are quantitatively de-
scribed by the Bose-Hubbard model (BHM) [12, 13].

The BHM is a minimal many-body Hamiltonian that
contains the key physics of strongly interacting soft-core
bosons on a lattice. It embodies the competition be-
tween the kinetic and repulsive on-site interaction ener-
gies giving rise to a quantum phase transition. For small
interactions the bosons are completely delocalized lead-
ing to a superfluid (SF) phase, while for sufficiently large
interactions, and a commensurate density, the bosons be-
come localized and enter the Mott insulator (MI) phase.
By increasing the depth of the optical lattice potential
this archetypal SF to MI transition has been experimen-
tally observed in cold-atom systems with one dimensional
(1D) [6, 10], 2D [7–9], and 3D [5, 11] lattices.

The essential qualitative features of the BHM phase
diagram, such as the existence of MI lobes, depicted
in Fig. 1, were worked out some time ago by Fisher et

al. [14]. Nonetheless the study of the BHM’s SF-MI tran-
sition continues to attract much attention [15], with a

large body of work [16–23] attempting to enhance the
quantitative understanding of its structure. The focus
of the work described here is on the BHM in 1D, which
in many respects displays rather peculiar physics. For
example, in 1D the SF phase is not a Bose condensate
of the single particle state with the lowest kinetic en-
ergy, but is instead characterised by an algebraic diverg-
ing momentum distribution [24]. Moreover, when cross-
ing the tip of a MI lobe in 1D the energy gap closes
exponentially slowly reflecting the Kosterlitz-Thouless
(KT) [14, 25] nature of the transition there. Related
to this, and exclusively in 1D, the shape of the MI lobes
also displays a novel and unexpected feature known as re-
entrance [18, 21–23], as shown most clearly in Fig. 2(d).

In general, a system exhibits re-entrance when a suc-
cession of transitions between two phases A and B,
such as A-B-A-B, can occur by monotonically increasing
just one parameter. Such a sequence is often counter-
intuitive. For example in the context of classical thermal
phase transitions it is natural for the varying parame-
ter to be temperature. It is then expected that the low
temperature phase A will be ordered, while increasing
the temperature will drive the system to a disordered
phase B. However, the appearance of re-entrance means
that increasing the temperature can in fact unexpectedly
stabilize the ordered phase A again. Precisely this se-
quence of phase transitions has been observed in liquid
crystals between the A = Smectic (ordered) phase and
B = Nematic (disorded) phase with increasing tempera-
ture [26, 27]. Reentrance has also been predicted to occur
in classical frustrated spin systems through a mechanism
of “order by disorder” [28].

At some constant chemical potential the BHM in
1D displays a similar re-entrant sequence of zero-
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temperature quantum phase transitions between the MI
and SF phases, as the coherent hopping amplitude is
increased from zero. This is again surprising since it
demonstrates that increasing the hopping amplitude,
which in isolation favours the itinerancy of the bosons,
can instead favour their localization under certain cir-
cumstances. In this work we analyse this unusual phe-
nomenon of the 1D BHM directly in the thermodynamic
limit by utilizing the infinite time-evolving block decima-
tion (iTEBD) algorithm [29–31] to variationally minimize
the infinite matrix product state (MPS) ansatz [32].
A highly unique feature of this family of states, heav-

ily exploited here, is that it is parameterized by a matrix
size χ which directly restricts the half-chain entangle-
ment permitted in the state [29, 31]. This allows us to
determine to what extent entanglement, which signals
the presence of quantum correlations and fluctuations in
the ground state, is essential for re-entrance to emerge.
Further to this infinite MPS enable the application of the
quantum information inspired finite-entanglement scal-
ing [33] to study the KT transition at the MI lobe tip.
In doing so we obtain an estimate of its location, derived
from the behaviour of half-chain entanglement entropy,
which is in excellent agreement with previous studies
utilizing order parameters, energy gaps or correlations.
This work thus provides further confirmation of the gen-
eral applicability of this novel scaling procedure to non-
integrable models.
The structure of this paper is as follows. In Sec. II

we give a brief overview of the properties of the BHM
in 1D. In Sec. III we begin by describing re-entrance in
the BHM, followed by the essential features of the infi-
nite MPS ansatz employed here and how signatures of
the MI-SF transition are manifested in our calculation.
The MI lobes are then reported as a function of finite-
entanglement from which we analyse the value of χ in
which re-entrance is first observed. In Sec. IV, after giv-
ing an overview of the extensive literature that has pre-
viously estimated the KT point in the 1D BHM, we then
proceed to apply finite-entanglement scaling to obtain a
new and complementary estimate on its location. Finally
we conclude in Sec. V.

II. BOSE-HUBBARD MODEL

The BHM Hamiltonian for a 1D chain in the grand-
canonical ensemble is (taking ~ = 1)

Ĥ = −t
∑

j

(

b̂†j b̂j+1 +H.c.
)

− µ
∑

j

n̂j +
U

2

∑

j

n̂j(n̂j − 1),

where b̂j is the bosonic annihilation operator and n̂j =

b̂†j b̂j is the number operator at site j, respectively. Within

Ĥ the chemical potential is given by µ, while the ki-
netic energy is described by the hopping amplitude t > 0
between neighbouring sites. In the absence of inter-
actions hopping leads to a tight-binding energy band

FIG. 1: (Color online) The mean-field phase (t, µ) diagram of
the BHM in 1D depicting in the shaded regions the MI lobes
with integer n fillings [14, 34–36]. These parabolic shaped
lobes are surrounded by the SF phase. Some density contours
in the SF phase are shown to illustrate their tendency to have
a negative slope. The hole boundary is the lower side of the
lobes while the particle boundary is the upper side. Note also
that the MI lobes are particle-hole asymmetric.

ǫkin(k) = −2t cos(ka) with quasi-momentum k and lat-
tice spacing a. The repulsive interaction is described
by the zero-range on-site term with positive strength U
which increases the energy if more than one boson occu-
pies a given site. Throughout this work we set the energy
scale to U and for convenience label the ratios as t/U → t
and µ/U → µ. For numerical calculations we use a max-
imum occupation number of nmax = 4 boson per site,
which for the near unit-filled calculations presented here
is entirely sufficient.
Despite not being analytically solvable the form of the

zero-temperature phase diagram of the BHM can be un-
derstood intuitively as follows [3, 14]. At t = 0 the
ground state of the system is simply a product of on-
site Fock states with no correlations. Every site is occu-
pied by an integer number of bosons n which minimizes
the on-site energy ǫint = −µn + 1

2n(n − 1). As a result
within the interval of chemical potentials n− 1 < µ < n
the density is pinned at the integer n and there is a fi-
nite interaction induced energy gap ∆(t = 0) = µ to the
lowest-lying particle-hole excitation. This gapped state
is a MI. As the hopping t is turned on ∆(t) decreases, but
its non-zero value is maintained for an extended region
in the (t, µ) plane. Generally the energy gap ∆(t) is the
distance in the µ direction between the particle (upper)
and hole (lower) boundary and as it closes it gives rise to
MI lobes. The familiar mean-field depiction [14, 34–36]
of the BHM phase diagram is shown in Fig. 1.

Within the MI lobe correlations, such as 〈b̂†0b̂x〉 ∼
exp(−x/ξ), are localized with a finite correlation length ξ
and, owing to the fixed density over a finite interval of µ,
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the compressibility κ = ∂ρ/∂µ vanishes. At some critical
value of t, defining the boundary of the lobe, the kinetic
energy overcomes the gap and there is a transition from
the gapped, incompressible MI to a gapless, compressible
SF phase surrounding the lobes. In 1D the SF possesses

algebraically decaying correlations 〈b̂†0b̂x〉 ∼ x−K/2, with
an exponent K = π/

√
ρsκt, where ρs is the superfluid

density [24]. Since correlations decay asymptotically to
zero the SF phase exhibits only quasi-long-range order
and does not Bose condense. Nonetheless it is the exis-
tence of a non-vanishing ρs which is the relevant criteria
for superfluidity.
Only in the non-interacting limit t → ∞ (or alterna-

tively when U = 0) does the system condense into the
k = 0 quasi-momentum state with every particle having
an energy of −2t. Thus if the chemical potential µ < −2t
then the system is empty (vacuum MI) since it costs en-
ergy to put a particle in, while for µ > −2t the number of
particles goes to infinity because every additional parti-
cle reduces the total energy of the system. This tendency
indicates that with non-zero interactions U , and µ fixed,
increasing t → ∞ will eventually drive the density to in-
finity [21]. As such density contours in the (t, µ) plane
will have a negative slope once t is large enough, as illus-
trated in Fig. 1.
In order that the compressibility κ is always posi-

tive the integer density contours of the SF phase must
meet the tips of the corresponding MI lobes, implying
that for the transitions across the tip the density re-
mains commensurate. Correspondingly, the phase tran-
sition occurring at any other point on the lobe boundary,
where a commensurately filled MI changes to an incom-
mensurate filled SF, belongs to a different universality
class from that at the tip. The scaling theory devel-
oped by Fisher et al. [14] showed that the tip is in the
universality class of the (d + 1)-dimensional XY model,
whereas the generic transition is described by mean-field
critical exponents in any dimension. In 1D this pre-
dicts that the lobe tips terminate with a KT transi-
tion point for which the gap closes asymptotically ac-
cording to ∆(t) = A exp(−B/

√
tKT − t), where tKT is

the critical value of hopping, and with A and B being
non-universal constants. Thus, the constant density KT
transition is driven by phase fluctuations, while in con-
trast the generic transitions everywhere else on the lobe
boundary are driven by density fluctuations.

III. RE-ENTRANCE AND ENTANGLEMENT

In 1D the MI lobe have a pointed triangular shape
strikingly different to the rounded mean-field lobe shown
in Fig. 1. Moreover the tips of MI lobes in 1D bend
downwards giving them a signature “claw” shape and
reflecting the presence of re-entrance not seen at all in
higher dimensions. Crucial to both these features is the
slowly closing gap at the tip’s KT transition. This causes
the tips location to be elongated to a much larger value

FIG. 2: (Color online) The phase diagram of the BHM pre-
dicted by a selection of different approximations. For (a), (b)
and (c) the MI lobe determined from 12th order SCPE in
Ref. 21 is also shown as the dotted line for comparison. In (a)
the sequence of MI lobes are shown that were computed using
mean-field decoupling [14, 34–36] on the hopping between ad-
jacent 1D L site blocks varying in size from the conventional
L = 1 up to L = 8 site clusters [37]. In (b) the sequence of
particle and hole boundaries computed from small finite-sized
systems [38], with periodic boundary conditions, for N = 2
to N = 11 sites are shown. In (c) the real-space RG scheme
described in [19] is used to determine the MI lobes [39], along
with • marking the predicted KT point. The inset displays a
zoomed in region of the phase diagram around the MI tip with
horizontal dashed lines highlighting the marginal re-entrance.
In (d) the DMRG results from [23] are shown as ◦, along with
two different sets of QMC data from [18] as × and [17] as ✸.
The solid lines delininate the region found to have an unit
density and the • marks the KT point found from the DMRG
calculation in [23].

of t than mean-field predicts. That re-entrance occurs
is then a combination of this property with the kinetic
energy driven tendency for all density contours to acquire
a negative slope with increasing t. For the unit-filled
contour this effect is already manifested before the gap
closes causing the lobe to follow this downward trend
making the hole boundary concave.

Re-entrant behaviour of the MI lobes is a subtle fea-
ture which is often not captured accurately by com-
monly used approximations. For example in Fig. 2(a)
we show that neither a single-site decoupled mean-
field theory [14, 34–36], nor its generalization to finite-
sized 1D clusters [37], display any signs of re-entrants.
However, some indications are visible in exact numer-
ics for small finite-sized systems with periodic bound-
aries [38], as depicted in Fig. 2(b) where the hole bound-
ary is concave for all system sizes. We also show in
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Fig. 2(c) that conventional real-space renormalization
group applied to the 1D BHM does in fact predict
a very marginal occurrence of re-entrance [39], a fea-
ture missed by the original work [19]. Re-entrant be-
haviour was first convincingly demonstrated by an ex-
haustive 12th order strong coupling expansion (SCE)
analysis [40]. For comparison their result is also plotted
in Fig. 2(a)-(c), illustrating how the finite-sized mean-
field cluster in Fig. 2(a) converge as a successive under-
estimation, while the unclosed lobes of the finite-sized
periodic systems in Fig. 2(b) converge as a successive
over-estimation. The presence of re-entrance was later
resoundingly confirmed by several density matrix renor-
malization (DMRG) [22, 23] and quantum Monte-Carlo
(QMC) calculations [17, 18] whose original results are re-
plotted in Fig. 2(d). While the presence of re-entrance
is well established here we give additional insight into its
origin by exploiting unique characteristics of an infinite
MPS approach.

A. Finite-entanglement infinite MPS

The matrix product state ansatz parameterizes the co-
efficients of a state |Ψ〉 of an N -site 1D lattice of d-
dimensional quantum systems as a product of matrices.
Specifically, an MPS has a canonical form [29–31]

|Ψ〉 =
∑

s1...sN

tr [A1(s1)Σ1A2(s2) · · ·AN (sN )] | s1 · · · sN 〉 ,

where si labels a basis for the local degree of freedom (for
example boson number states) of site i, Ai(si) are ma-
trices associated to each site i, indexed by si, each with
a fixed finite size χ, and Σi are positive diagonal matri-
ces. Here we work directly in the thermodynamic limit
N → ∞, avoiding logarithmic finite size corrections seen
in some earlier studies, and assume translational invari-
ance. This yields a class of many-body states highly con-
venient for studying quantum phase transitions, called
infinite MPS [32], that are compactly described by just
O(dχ2) complex parameters contained in the site inde-
pendent matrices A(si) and Σ.
In principle to represent exactly an arbitrary state of

an infinite lattice system requires χ → ∞. Instead the
fixed matrix size χ within the infinite MPS ansatz is for-
mally the maximum allowed rank of the Schmidt decom-
position of |Ψ〉 when it is bipartitioned into two semi-
infinite halves as [29, 31]

|Ψ〉 =
χ
∑

α=1

λα|Φ[⊳]
α 〉|Φ[⊲]

α 〉, (1)

where λα are real Schmidt coefficients, while |Φ[⊳]
α 〉 and

|Φ[⊲]
α 〉 are the orthonormal set of Schmidt states for the

left and right half-chains. When an infinite MPS is in its
canonical form the matrix elements of Σ are the Schmidt

coefficients λα and their importance is that they ex-
pose the entanglement between the two semi-infinite half
chains as quantified by the von-Neumann entropy

S 1

2

= −
χ
∑

α=1

λ2
α log2(λ

2
α). (2)

Thus, the maximum Schmidt rank χ permitted has a
significant physical meaning as setting an upper limit
S 1

2

= log2(χ) to entanglement that can exist between

two halves of the system within the description. The in-
finite MPS ansatz for χ > 1 therefore provides a powerful
framework to go beyond mean-field theory by including
non-trivial quantum correlations.
Two powerful and highly efficient methods exist for

computing directly an infinite MPS approximation to
the ground state of a nearest-neighbour interacting 1D
Hamiltonian like the BHM, namely the iTEBD [29, 31]
and iDMRG algorithms [41, 42]. While they operate on
the same underlying ansatz [65] the main difference be-
tween them is that iTEBD is a power method of find-
ing the ground state exploiting imaginary time-evolution,
whereas iDMRG is a very efficient eigensolver method
based on the diagonalization of an effective local Hamil-
tonian. For determining the most accurate infinite MPS
approximation to the ground state the aim would be to
use the largest accessible χ, which is typically on the
order of several 100’s to 1000’s. In this case the two al-
gorithms tend to the same fixed point, but the iDMRG
algorithm converges considerably faster [42].
The aim of our work here is to instead examine system-

atically how the phase diagram of the BHM changes with
increasing χ, starting from its trivial χ = 1 product state
limit, and provide a rather unique perspective on the role
of entanglement on its properties. As we shall describe
shortly, the most profound changes to the structure of
the MI lobe in fact occur at very small values of χ < 20
where either algorithm converges fast. However, in the
small χ regime the iDMRG algorithm is known to intro-
duce a small perturbation, due to non-negligible trun-
cation, causing it to produce a sub-optimal variational
infinite MPS approximation [42, 43]. For this reason we
instead employ the iTEBD algorithm whose imaginary
time-evolution approach is highly robust allowing near
optimal infinite MPS to be found irrespective of χ. This
ensures our results are insensitive to the specifics of the
algorithm and instead reflect the underlying physics cap-
tured by an infinite MPS.

B. Signatures of criticality at finite entanglement

Despite operating in the thermodynamic limit any in-
finite MPS calculation with a finite χ can never dis-
play a genuine critical point due to its inability to pro-
duce the corresponding divergence in the correlation
length [32]. Instead the finite-entanglement approach
yields a pseudo-critical point whose location depends on
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χ but nevertheless provides useful information about the
real transition point [33]. In this way we can charac-
terize the pseudo transition at finite χ by computing a
variety of both local and global quantities which dis-
play an anomaly of some form. In Fig. 3(a) the be-
haviour of some common quantities are shown as a func-
tion of t along a line with µ = 0.60 for a χ = 3 calcula-
tion. This includes local quantities, such as the density
〈n̂j〉, its variance ∆(n̂j) = 〈n̂2

j〉 − 〈n̂j〉2, the order pa-

rameter 〈b̂†j〉, as well as a nearest-neighbour correlation

〈b̂†j b̂j+1〉c = 〈b̂†j b̂j+1〉 − 〈b̂†j〉〈b̂j+1〉, and the global half-
chain von-Neumann entropy S 1

2

of the state. All these

quantities show an abrupt change at the same value of
t ≈ 0.105, whether it be the increase in 〈n̂j〉 from unit
filling expected for a generic MI-SF transition, or a corre-
sponding local maxima in S 1

2

. These changes ultimately

reflect an abrupt change in the nature of the ground state
described by minimizing the infinite MPS ansatz. Owing
to the constant and predictable behaviour of the density
〈n̂j〉 in the MI phase, for all χ, we use this quantity to
isolate the lobe boundary and find that a precision of
δn = 10−4 is sufficiently accurate away from the tip.

For χ = 1 the infinite MPS ansatz reduces to an un-
entangled product state so minimization is equivalent to
performing a self-consistent mean-field calculation. The
boundaries determined by our procedure reproduce the
analytic result for this limit. Moving beyond mean-field
theory with a χ > 1 cannot be performed for arbitrary
values of χ. Indeed when using χ = 2 the iTEBD algo-
rithm fails to converge, and instead χ = 3 is the next
smallest value. The reason for this numerical issue is en-
tirely physical. The iTEBD algorithm, while not explic-
itly particle number conserving, nonetheless consistently
minimizes, for any χ, to a particle number symmetric
infinite MPS when describing any ground state in the
MI phase. The symmetry is numerically stable due to
the finite gap in this phase. As a result of this sym-
metry the Schmidt coefficients λα for MI ground states
posses a specific degeneracy structure, illustrated for a
χ = 13 calculation in Fig. 3(b). This shows that the
2nd and 3rd Schmidt coefficients are degenerate and thus
any truncation to χ = 2 will be unstable. The values of
χ = 1, 3, 5, 7, 8, . . . in which we truncate to are specifi-
cally chosen to respect this degeneracy structure.

In the gapless SF phase the infinite MPS minimized by
the iTEBD algorithm does not preserve particle number
symmetry, as illustrated in Fig. 3(a) by the order param-

eter 〈b̂j〉 becoming non-zero. The finite-entanglement ap-
proach therefore inherits the mean-field theory feature of
describing the MI to SF transition via symmetry break-
ing. As χ is increased the value of the order parameter

〈b̂j〉 decreases suggesting that the exact non-symmetry

breaking transition, where 〈b̂j〉 = 0 in both phases, is re-
covered in the χ → ∞ limit. However, unlike mean-field
theory the Schmidt spectrum λα contained within the
infinite MPS description is also an important signature
of the transition. In Fig. 4 the Schmidt spectrum for a

χ = 13 calculation is displayed as a function of t.

This ‘entanglement’ spectrum has been proposed as a
general method of detecting phase transitions which lie
outside the Landau symmetry breaking paradigm. Based
on the degeneracy structure of this spectrum a complete
characterization of the topologically protected Haldane
phase [44] of a S = 1 spin chain [45] and the Haldane
insulator phase of the extended BHM [46] have been
demonstrated. In both cases it is argued that the transi-
tion to a topologically trivial phase is detected by the col-
lapse of this structure. The utility of this entanglement
spectrum approach is further confirmed here in Fig. 4 for
the conventional MI-SF transition in the BHM. A split-
ting of Schmidt spectrum degeneracies in the MI phase,
accompany the breaking of the global U(1) particle num-
ber symmetry, is seen as the SF phase is entered around
t ≈ 0.15. Crucially Fig. 4 shows that a χ = 13 cal-
culation is already sufficiently entangled for the infinite
MPS ansatz to display re-entrant behaviour. The reap-
pearance of degeneracy in the Schmidt spectrum around
t ≈ 0.20 signals that the MI phase has been re-entered.
We will now examine the shape of the MI lobe and the
re-entrance phenomena as a function of χ in more detail.

C. Finite-entanglement lobes and re-entrance

Using the abrupt changes in the density 〈n̂j〉 we com-
puted the lobe boundaries as a function of χ shown in
Fig. 5. This plot gives a systematic extrapolation of the
MI lobe as a function of the maximum half-chain entan-
glement permitted. As χ is increased the lobe is seen to
monotonically increase in size from the gross underesti-
mate found in mean-field limit. This indicates that in-
creased entanglement has a preferential effect on the de-
scription of the MI state, stabilising this phase for larger
regions of (t, µ). Thus, in addition to symmetry break-
ing, much like the finite-cluster mean-field results shown
in Fig. 2(a), finite-entanglement calculations are found to
predict lobes that are an underestimate of the exact one.
Yet, quite remarkably the finite-entanglement lobes are
seen to rapidly converge, to the essentially exact DMRG
result [23], for extremely modest values of χ ∼ 21.

Indeed the first jump from the χ = 1 mean-field the-
ory parabolic lobe to χ = 3 infinite MPS lobe already
accounts for ≈ 95% of the exact lobe size. This is de-
spite the fact that a χ = 3 infinite MPS approximation
never exhibits a correlation length much above ξ ≈ 2 lat-
tice sites, and so is substantially smaller than the finite-
cluster sizes used in the mean-field approach. Further-
more a χ = 3 infinite MPS has far fewer variational pa-
rameters than the L = 8 site mean-field decoupled calcu-
lation. This illustrates that the infinite MPS ansatz even
with a small χ is very adept at describing the relevant
degrees of freedom. We can attribute this dramatic in-
crease in the size of the MI lobe seen for χ = 3 due to
its nascent ability to describe an elementary particle-hole
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FIG. 3: (Color online) (a) Plotted here are for a χ = 3 calcula-
tion are the on-site properties density 〈n̂j〉, its variance ∆(n̂j),

the order parameter 〈b̂†j〉, as well as the nearest-neighbour cor-

relation 〈b̂†j b̂j+1〉c, and the half-chain von-Neumann entropy
S 1

2

, as a function of t with µ = 0.60. The order parameter and

nearest-neighbour correlation are real since time-reversal sym-
metry ensures the ground state itself is real. All these quan-
tities display anomalous kinks at the same pseudo-transition
point (denoted by the vertical dashed line) and could in prin-
ciple be used to detect the transition. (b) The Schmidt spec-
trum λα is displayed for a χ = 13 calculation inside the MI
lobe at µ = 0.20 and t = 0.22. A non-degenerate Schmidt
coefficient is represented by a ‘−’, while a doubly degenerate
one is given by ‘+’. This pattern of degeneracies is a conse-
quence of U(1) particle number symmetry being preserved by
the infinite MPS ansatz when describing a MI and is found
all over the lobe.

excitation, such as the superposition

|Ψ〉 = α | · · · 1111 · · ·〉+β (| · · · 1201 · · ·〉+ | · · · 1021 · · ·〉) ,

while retaining particle number symmetry and transla-
tional invariance. For small χ the tips of the lobes are
still rounded enough that their location can be deter-
mined easily. This reveals another interesting feature,
shown in Fig. 5, that for all χ > 1 the lobe tips intersect
the line µ(t) = −1.538t + 0.559 to very good approxi-
mation. Thus for the region around these tips this line
has yet to saturate to the −2 slope expected as t → ∞.
That the lobe elongates along such a well defined trajec-
tory will be very useful shortly for performing a finite-
entanglement scaling approximation on the KT critical
point. It also indicates that re-entrance will emerge once
the tip has moved sufficiently far along this line.
To determine the minimum value of χ required for re-

entrance to appear we consider an enlarged plot of the
tip region for the marginal cases of χ = 7, 8 and 9 in
Fig. 6. A clear distinction is seen between χ = 7 and
χ ≥ 8, as quantified by the inset of Fig. 6 which plots

FIG. 4: (Color online) The Schmidt spectrum λα computed
with χ = 13 as a function of t for constant µ = 0.20. In
the left panel the four largest Schmidt coefficients are dis-
played. For t → 0, deep in the MI regime, only one significant
Schmidt coefficient λ1 ≈ 1 remains reflecting the unentangled
unit-filled Fock state | · · · 111 · · ·〉. As t increases the infinite
MPS description of the MI state becomes more complex with
non-zero entanglement and a Schmidt spectrum possessing a
degeneracy structure described in Fig. 3(b). When t ≈ 0.15
the SF phase is entered and this degeneracy, visible here for
λ2 and λ3, is lifted as the particle number symmetry is bro-
ken. This degeneracy splitting occurs right down the Schmidt
spectrum, as shown in the zoomed in plot of the remaining
Schmidt coefficients in the right panel. A χ = 13 is sufficiently
large that at this chosen µ re-entrance is reproduced by the
finite-entanglement approximation. At t ≈ 0.20 the MI phase
is re-entered as signalled by the re-emergence of the degener-
acy structure and particle number symmetry. In Fig. 3(b) the
MI state shown lies inside this re-entrant region. For t > 0.23
this is finally broken once again as the SF phase is re-entered.

the derivative of the hole boundary. While χ = 8 and
χ = 9 show a sizeable region of t with a negative slope
and concavity, χ = 7 displays only a very small precursor
near the tip. Thus, χ = 8 is a measure of the minimum
amount of entanglement needed for genuine re-entrance
to manifest in the resulting MI lobe. That it is estab-
lished at such a small value of χ is reminiscent of its
similar emergence in SCE approaches where re-entrance
is not seen for low orders, such as in an early 3rd or-
der study [20], and only appeared once a 10th order or
higher expansions were performed [21]. Here we can re-
late its emergence to the entanglement by examining the
Schmidt spectrum. As shown in Fig. 3 the 8th Schmidt
coefficient in the MI phase is the first non-degenerate co-
efficient after the 3 degenerate pairs that follow the first
Schmidt coefficient. The improvement in the description
of the MI state induced by the corresponding Schmidt
state for this coefficient therefore appears to be pivotal
in establishing re-entrance.

The shape of the MI lobe, and thus the appearance of
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FIG. 5: (Color online) The boundaries of the MI lobe deter-
mined by iTEBD calculations for a sequence of Schmidt ranks
χ ranging from a mean-field value of χ = 1 to a sizeable finite
entanglement value of χ = 21. The inset shows a zoom in of
the tip region for χ = 5 to χ = 21. To good approximation
for all χ > 1 shown the tips of these lobes intersect the line
µ(t) = −1.538t + 0.559 displayed.

FIG. 6: (Color online) A zoomed in plot of the MI lobe bound-
aries for the cases χ = 7, 8 and 9 are shown. The hole bound-
ary is fitted with a 4th order polynomial whose derivative,
shown in the inset, quantifies the emergence of re-entrance.
Both χ = 8 and 9 show a significant finite region of t where the
slope is negative, indicating re-entrance, while χ = 7 shows
only a precursor to this with a very small negative slope at
the cusp of the tip itself. The line µ(t) intersecting the tips
is also shown

re-entrance, is embodied by the underlying competition
between the kinetic and interaction energies contained
in the MI and SF states. To provide some physical in-
sight into the influence of increasing χ we first rewrite
the energy density ǫ of the BHM as

ǫ = −t
(

〈b̂†j b̂j+1〉c + 〈b̂†j〉2 + c.c
)

− µ〈nj〉

+ 1
2∆(n̂j) +

1
2 〈n̂j〉(〈n̂j〉 − 1),

after exploiting translational invariance. In this form we
expose the two contributions to kinetic energy, namely
via symmetry breaking with a non-zero order parameter

〈b̂j〉 and via inter-site correlations 〈b̂†j b̂j+1〉c. When ei-
ther of these contributions are non-zero they induce non-
zero on-site number fluctuations ∆(n̂j) contributing to
the interaction energy. In the SF phase all these contri-
butions will typically be non-zero. In general the correla-

tion 〈b̂†j b̂j+1〉c 6= 0 only if the ground state is entangled.
For the MI phase, however, particle number symmetry

is highly restrictive prohibiting 〈b̂j〉 6= 0 so any on-site
number fluctuations ∆(n̂j) 6= 0 also only appear if the
ground state is entangled. Since the density is pinned to
〈n̂j〉 = 1 these correlation and fluctuation contributions
entirely account for the MI state energy density. For ex-
ample, this means that at χ = 1 the MI state simply has
ǫ = −µ independent of t, while in contrast the SF phase
has the symmetry breaking mechanism available for it to
accommodate increasing kinetic energy. This inevitably
favours the gapless SF phase causing the underestimation
of the MI lobe seen in mean-field theory.
Once χ > 1 the energetics of the MI state become much

less trivial. To illustrate this in Fig. 7 we plot the main
contributions to ǫ as a function of t for a χ = 3, 7 and
χ = 9 infinite MPS. A µ = 0.204 is chosen so that it cuts
through the re-entrance which is present for χ = 9. It is
apparent from Fig. 7 that the description of on-site num-
ber fluctuations are not significantly different between
the three approximations and grows monotonically with
t irrespective of the phase. Yet the emergence of a re-
entrant MI state above t > 0.20 for χ = 9 coincides

entirely with a complete suppression of 〈b̂j〉 along with a

dramatic elevation in the correlation 〈b̂†j b̂j+1〉c not seen
for the lower χ states. Indeed for χ = 3 the correlation
contribution saturates for t > 0.10. The importance of
kinetic energy for re-entrance was implied earlier from its
tendency to induce negative slope density contours. Here
the energetics strongly suggests that it is the improved
description of kinetic energy with increasing χ that is key
to the emergence of re-entrance.
We can understand the threshold in χ by noting that

the nature of a ground state in general arises from the
condition of having extremal local properties, like for the
quantities contained in ǫ, while simultaneously satisfying
the global symmetries of the system. A classic exam-
ple of this is a spin- 12 antiferromagnetic chain where in
isolation each exchange interaction is minimized by a sin-
glet state, however, frustration means that a spin cannot
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FIG. 7: (Color online) For χ = 3, 7 and 9 the fluctua-
tion and correlation contributions to the ground state en-
ergy density ǫ are plotted as a function of t for µ = 0.204.
Specifically the contributions are the half the on-site num-
ber variance 1

2
∆(n̂j), the uncorrelated doubly occupancy

1

2
〈n̂j〉(〈n̂j〉 − 1), the order parameter squared −2t〈b̂†j〉

2 and

the nearest-neighbour correlation −2t〈b̂†j b̂j+1〉c. The phase
boundaries depicted by the shading are those determined by
χ = 9, which displays re-entrance. While the on-site interac-
tion terms display only marginal changes with χ, the kinetic
energy contributions change substantially. In the re-entrant
region a χ = 9 is sufficient to describe increased kinetic en-
ergy via the correlation 〈b̂†j b̂j+1〉c while suppressing entirely

the symmetry breaking contribution 〈b̂†j〉
2.

be in a singlet with both its neighbours. Instead, to re-
cover translational invariance, the ground state becomes
a complicated superposition of all singlet coverings creat-
ing quasi-long range order and requiring an infinite MPS
description with χ > 1 [47]. For the 1D BHM the re-
entrant threshold for χ thus relates to the ability of the
infinite MPS to describe the intricate correlations of a MI
state possessing significant kinetic energy, while simul-
taneously satisfying both the translational and particle
number symmetry.

IV. THE KOSTERLIZT-THOULESS

TRANSITION

A. Overview of KT critical point calculations

Due to its infinite order and associated very slowly clos-
ing energy gap ∆(t), the essential singularity of the KT
transition is notoriously hard to compute numerically.
For this reason numerous studies have utilised a variety
of different methods to tackle its characterisation. To
put our estimate, described shortly, into context we give
here a brief overview of these extensive findings.

By far the simplest approach is a site-decoupled mean-
field theory [14, 34–36] which gives tKT = 0.086 seen
already in Fig. 1, a result which becomes exact in infinite-
dimensions. By considering a truncated BHM, where
no triple or higher occupancies are allowed, a real-space
renormalization group approach was applied in Ref. [19]
giving tKT = 0.215, as seen in Fig. 2(c). Early quan-
tum Monte Carlo (QMC) calculations [16, 17] also esti-
mated from the closing energy gap essentially the same
value tKT = 0.215 ± 0.02. However, an analytical ap-
proach [48], based on the Bethe ansatz approximating
the full BHM, but conjectured to correspond to the exact
solution of the truncated model, yielded a much higher
estimate tKT = 0.289. Furthermore, other exact diag-
onalization scaling studies of the full BHM, like that in
Fig. 2(b), also found tKT = 0.275±0.005 using the energy
gap ∆(t) [49], tKT = 0.283± 0.005 from the SF stiffness
ρs [50], and tKT = 0.257 ± 0.001 from the derivative of
the ground state fidelity [38].
Later calculations corroborated this larger value of

tKT with a more recent QMC calculation [18] giving
tKT = 0.300 ± 0.005, very closely followed by an ex-
act diagonalization study combined with renormalization
group [51] giving tKT = 0.304 ± 0.002. A quite differ-
ent approach from these has been pursued using SCE
on the full BHM. Early 3rd order expansions [20] gave a
bare estimate of tKT = 0.215 which was then modified
to tKT = 0.265 once a careful extrapolation was made
taking account of the KT nature of the tip [40]. Sub-
sequent related work dramatically enhanced the SCE to
12th order to give tKT = 0.26± 0.01 [21].
Some of the most accurate treatments of this prob-

lem have utilised the DMRG method [41]. The first such
study used the infinite-size DMRG algorithm with peri-
odic boundary conditions to compute the energy gap∆(t)
allowing an extrapolation to find tKT = 0.298±0.01 [52].
Owing to the difficulties associated with ∆(t) a second
study instead computed, with the same algorithm, the

behaviour of long-range correlations 〈b̂†0b̂x〉 across the KT
transition. From Luttinger liquid theory the asymptotic
exponent K of these correlations is known to be exactly
K = 1

2 at the critical point and this enabled a different
estimate to be found as tKT = 0.277± 0.01 [22]. Another
study, using instead the finite-size DMRG algorithm with
periodic boundary conditions, found a slightly lower es-
timate of tKT = 0.26 closer to those determined with
SCE [53]. One of the most exhaustive DMRG calcu-
lations, following these previous works, used finite-size
algorithm with open boundary conditions [23], where
DMRG is known to be most accurate. It again examined

the decay of the 〈b̂†0b̂x〉 correlation for large finite-sized
systems giving an estimate of tKT = 0.297± 0.01 higher
than most earlier values.
That tKT has been underestimated in the very early

works has been revealed by numerous recent calcula-
tions. One of these exploits the iTEBD algorithm used
here to estimate [54] the KT critical point as tKT =

0.2975± 0.0005, once again from the decay of the 〈b̂†0b̂x〉
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correlation. Other recent finite-sized DMRG calcula-
tions have used finite-size scaling to estimate tKT =
0.2980 ± 0.0005 from the von-Neumann entropy [55],
tKT = 0.3050 ± 0.001 from the density-density 〈n̂0n̂x〉
correlation [56], tKT = 0.3030 ± 0.009 from the energy
gap [57], tKT = 0.3190± 0.001 from the winding number
excitation gap [58] and tKT = 0.2989±0.0002 from bipar-
tite density fluctuations [59]. As is apparent, these works
have produced a spread of estimates for the critical hop-
ping tKT with non-overlapping error bars, indicating that
not all the dominant uncertainties in these results have
been accurately accounted for. Nonetheless, these most
recent and extensive studies have established a consen-
sus, by examining a variety of different quantities, that
tKT ≈ 0.3.
Our approach here has similarities to these recent stud-

ies in that it uses an MPS ansatz and a similar minimiza-
tion algorithm, but also differs substantially in that we
work directly in the thermodynamic limit and employ
finite-entanglement scaling [33], as opposed to finite-size
scaling. As we shall now show this does not rely on the
asymptotic behaviour of any specific correlation function
or energy gap. Instead it is based on general scaling
arguments about the half-chain entropy S 1

2

that apply

irrespective of many of the microscopic details of the un-
derlying model.

B. Entanglement scaling of the KT point

As we saw earlier, for a fixed χ an infinite MPS ap-
proximation produces pseudo-critical points tc(χ), whose
location depends on χ and is signalled by the singular
behaviour of certain physical quantities. Due to this the
application of scaling analysis with χ in the region near
the transition was proposed [33] as a means of extracting
information about the nature and location of actual criti-
cal phenomenon in the limit χ → ∞. So far this approach
has been successfully applied to the transverse field Ising
model and Heisenberg model [33], as well as the trans-
verse axial next-nearest-neighbor Ising model [60]. Here
we apply it for the first time to accurately determine the
KT point of the unit-filled MI lobe.
To determine the pseudo-critical point at the tip of

the lobes we assume that with increasing χ the trajec-
tory of the tips towards the true KT point is given by
the line µ(t) in the (t, µ) plane defined earlier. Previous
calculations, shown in Fig. 5, confirmed this to be a good
approximation for 3 ≤ χ ≤ 21. In contrast to the generic
transitions used to constrain the lobe structure, locating
the pseudo-critical point at the tip, where 〈n̂j〉 remains
fixed at unity, is a more difficult task. For this reason we
instead exploit the local maxima anomaly in S 1

2

, shown

earlier in Fig. 3(a) for a generic transition. In Fig. 8(a)
the half-chain entropy S 1

2

is shown as a function of t along

the line µ(t) for a sequence of finite-entanglement calcula-
tions ranging from χ = 7 (bottom) to χ = 70 (top). The
local maxima anomaly persists at the tip with a value

FIG. 8: (Color online) (a) The half-chain von Neumann en-
tropy S 1

2

computed as a function of hopping t along the line

µ(t) depicted in Fig. 5 for a sequence of different values of χ
ranging from χ = 7 (bottom curve) to χ = 70 (top curve).
The maximum value of S 1

2

increases as a function χ as more

entanglement is permitted within the infinite MPS ansatz.
(b) A plot of the value of S 1

2

at the pseudo KT point as a

function of ln(χ). The points are least-squared fitted by a line
A1 ln(χ) + A2 with A1 = 0.22 and A2 = 0.32. (c) The loca-
tion of the pseudo-critical points tc(χ) as a function of ln(χ).
The line fitting the points (with a chi-squared = 12.5 and 7
degrees of freedom) is given in Eq. 6, with the free parameters
found to be B1 ≈ −1.22, B2 ≈ 1.93 and tKT = 0.30 ± 0.01.
In both fittings for (b) and (c) the three smallest values of
ln(χ), corresponding to χ = 7, 8 and 10, have been excluded.
Note how these points (denoted by ×) deviate considerably
from the fit indicating that the asymptotic scaling regime is
not satisfied for such small values of χ.

increasing with χ suggestive of a divergence in χ → ∞
limit. From these maxima we extract the pseudo-critical
hopping tc(χ) for each χ providing the raw data nec-
essary for finite-entanglement scaling. From this data
alone it is possible to perform a crude scaling analysis,
such as a simple power-law extrapolation, without re-
course to prior knowledge of the nature of the transition,
and obtain a reasonable initial estimate of its location.
However, to proceed more accurately we require an ap-
propriate scaling relation, taking into account the known
KT nature of the transition, describing the asymptotic
functional form of tc(χ) .
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As observed earlier in Fig. 5 the MI lobe monotonically
increases in size with increasing χ. As such the pseudo-
critical point tc(χ) at the tip of the lobe for any finite
χ will be an underestimation of the exact KT point and
the exact phase of the system at tc(χ) is MI with a finite
correlation length ξc(χ). Following Ref. 33 we assume
that the relation between the correlation length ξc and χ
is of the form

ξc(χ) ∼ χκ, (3)

where κ is a real exponent. To test this relation we use
the scaling of the half-chain entropy S 1

2

with the correla-

tion length near a critical point found in conformal field
theory [61–63] as

S 1

2

∼ c

6
ln

(

ξ

a

)

, (4)

where c is the corresponding central charge. Assuming
that Eq. 3 holds we expect the dependence of S 1

2

on χ at

the pseudo-critical point to be

S 1

2

∼ κc

6
ln(χ). (5)

In Fig. 8(b) we plot the maxima of S 1

2

extracted from

Fig. 8(a) and a fitted line S 1

2

= A1 lnχ + A2. The

asymptotic nature of the scaling relations implies that
it should only be fitted for sufficiently large χ. Our data
suggests that the scaling regime for finite-entanglement
scaling can be attained by using pseudo-critical points for
χ > 10. While this is a small χ physically its corresponds
to including only the tips of MI lobes where re-entrance
has already been firmly established, signifying the funda-
mental connection between these phenomenon. We find
that the χ > 10 points fit well to Eq. 5, with a slope
A1 ≈ 0.22, indicating the validity of the scaling relation
Eq. 3. Since the central charge for a KT transition is
c = 1 we then estimate that κ ≈ 1.32 for the BHM. This
value is in close agreement to that found in Ref. [33] for
the KT critical point in the Heisenberg model. This co-
incidence further confirms that exponent κ depends only
on the nature of the critical point and not on the micro-
scopic details of the underlying Hamiltonian.
Having established the applicability of Eq. 3 we now

employ the known KT scaling relation [25, 64] connecting
the pseudo-critical point tc to the correlation length ξc

tc(ξc) =
C1

(ln ξc + C2)
2 + tKT,

where C1 and C2 are real constants and tKT is the loca-
tion of the true KT point. Using Eq. 3 again we then
obtain the corresponding scaling of tc with the entangle-
ment as

tc(χ) =
B1

(lnχ+B2)
2 + tKT, (6)

with B1 and B2 real constants. In Fig. 8(c) we plot tc
against ln(χ) and the fitting to Eq. 6. This analysis yields
an estimate

tKT = 0.30± 0.01.

Our result shows excellent agreement to the large
body of recent studies [23, 54–57, 59] reviewed earlier.
While complementary to those calculations, the finite-
entanglement scaling origin of this estimate is quite dis-
tinct from the fitting of a specific correlation function or
energy gap performed in those previous studies. As such
we have shown that this approach can also yield a precise
critical point even in this most demanding case.
The generous error bars in our estimate are derived

from fitting Eq. 6 to the data. This is the dominant con-
tribution to the uncertainty in our estimate since the data
itself for each χ was confirmed to be essentially exact by
converging the imaginary time-evolution in iTEBD suf-
ficiently well with a sequence of decreasing time-steps.
Another much smaller source of error, not explicitly ac-
counted for, arises from assuming that the tip lies on the
line µ(t). Deviations from this line would result in the
pseudo-critical point located being a generic transition
in close proximity to the tip, rather than the tip transi-
tion itself, and therefore underestimating its value. To
constrain this we confirmed that for the largest χ con-
sidered our calculations produced a 〈n̂j〉 which remained
unchanged, to within the precision δn, when crossing the
transition identified. An obvious strategy to improve this
finite-entanglement estimate would be to perform a more
exhaustive and higher precision determination of both
the t and µ location of the pseudo-critical point in this
region. Additionally the use of larger χ data would in-
crease the data set size used in the fitting and also further
ensure that the scaling-regime was entered. This could
substantially reduce the uncertainty and potentially yield
one of the most accurate determinations of tKT free from
logarithmic finite-sized corrections.

V. CONCLUSIONS

Utilizing the iTEBD algorithm we have performed a
finite-entanglement analysis of the MI-SF transition in
the BHM in 1D. The infinite MPS ansatz applied pro-
vides a unique extrapolation beyond mean-field theory
in which a restriction on the entanglement between the
two semi-infinite half chains is the defining characteristic.
Crucially by operating directly in the thermodynamic
limit this approach simplifies a scaling analysis approach
since only the entanglement needs to be considered. The
infinite MPS description enabled us to study the influence
of entanglement on the uniquely 1D characteristics of the
MI-SF transition such as re-entrance in the MI lobe shape
and the location of the KT transition at its tip. We found
that the minimum Schmidt rank in which re-entrance
was manifested in the MI lobe was χ ≥ 8. The physical
origins of this threshold was shown to be connected to



11

the entanglement needed for an infinite MPS to be both
particle-number symmetric and effectively capture intri-
cate particle-hole excitations above the MI state carrying
kinetic energy. We then focused on the tip of the lobe
and performed a finite-entanglement scaling analysis of
the infinite order KT critical point known to exist there.
In this approach we found that using a χ sufficiently large
so that re-entrance was already present allowed the scal-
ing regime to be reached to good approximation. By us-
ing the location of the pseudo-critical point up to a very
moderate χ = 70 we obtained a new estimate of the KT
point as tKT = 0.30 ± 0.01, in excellent agreement with
the best earlier works based on DMRG. This illustrates
how relatively low cost iTEBD calculations can not only
provide qualitative insight into the lobe structure but, in
combination with the appropriate scaling relations, also
provides quantitatively accurate estimations of critical
points via finite-entanglement scaling. While our work

has highlighted tentative links between the KT nature of
the tip transition in 1D and re-entrance, open questions
still remain about how deep this connection is. Future
work employing an explicitly particle-number conserving
iTEBD approach [42], thereby guaranteeing that the KT
point is crossed numerically, might reveal further insight.
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Gillen, S. Fölling, L. Pollet, and M. Greiner, Science 329,
547 (2010).

[10] E. Haller, R. Hart, M.J. Mark, J.G. Danzl, L. Re-
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H.-C. Nägerl, Nature 466, 597 (2010).

[11] S. Trotzky, L. Pollet, F. Gerbier, U. Schnorrberger, I.
Bloch, N. V. Prokofev, B. Svistunov, and M. Troyer, Nat.
Phys. 6, 998 (2010).

[12] D. Jaksch, C. Bruder, J.I. Cirac, C.W. Gardiner and P.
Zoller, Phys. Rev. Lett. 81, 3108 (1998).

[13] I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys.
80, 885 (2008).

[14] M.P.A. Fisher, P.B. Weichman, G. Grinstein and D.S.
Fisher, Phys. Rev. B 40, 546 (1989).

[15] P.W. Anderson, arXiv:1102.4797v1.
[16] G.G. Batrouni, R.T. Scalettar and G. Zimanyi, Phys.

Rev. Lett. 65, 1765 (1990).
[17] G.G. Batrouni and R.T. Scalettar, Phys. Rev. B 46, 9051

(1992).
[18] V.A. Kashurnikov, A.V. Krasavin and B.V. Svistunov,
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