5,628 research outputs found

    Ratchet Effect and Nonlinear Transport for Particles on Random Substrates with Crossed ac Drives

    Full text link
    We show in simulations that overdamped interacting particles in two dimensions with a randomly disordered substrate can exhibit novel nonequilibrium transport phenomena including a transverse ratchet effect, where a combined dc drive and circular ac drive produce a drift velocity in the direction transverse to the applied dc drive. The random disorder does not break any global symmetry; however, in two dimensions, symmetry breaking occurs due to the chirality of the circular drive. In addition to inducing the transverse ratchet effect, increasing the ac amplitude also strongly affects the longitudinal velocity response and can produce what we term an overshoot effect where the longitudinal dc velocity is higher in the presence of the ac drive than it would be for a dc drive alone. We also find a dynamical reordering transition upon increasing the ac amplitude. In the absence of a dc drive, it is possible to obtain a ratchet effect when the combined ac drives produce particle orbits that break a reflection symmetry. In this case, as the ac amplitude increases, current reversals can occur. These effects may be observable for vortices in type II superconductors as well as for colloids interacting with random substrates.Comment: 11 pages, 16 postscript figure

    Registration of Textured Remote Sensing Images Using Directional Gabor Frames

    Get PDF
    In this paper we propose to utilize a new concept of discrete directional Gabor frames for automatic image registration. The directional Gabor representations have been shown to provide more accurate feature extraction than directional wavelet transforms for images where texture is the dominant feature. Initial experimental results are presented here which indicate that discrete directional Gabor frames exhibit strong correlations, which indicates that they are likely to improve the existing image registration toolbox

    Metastable states of a driven flux lattice in a superconductor with strong pins

    Full text link
    The flux lattice driven by a uniform driving force in a superconductor with hot, strong, sharp and randomly distributed pinning centers, with applied magnetic field half the matching field is simulated. At low temperature both a non activated regime, where flux motion occurs within a robust percolative flux flow channel, and an activated regime are obtained depending on the sample preparation. These two regimes exhibit distinct resistivity and magnetic induction. In the non activated regime, a clear fingerprint is observed in the autocorrelation function of the longitudinal resitivity, which oscillates at a frequency close to the inverse lattice diffusion time.Comment: 6 figure

    Mesoscale subduction at the Almeria-Oran front. Part 2: biophysical interactions.

    Get PDF
    This paper presents a detailed diagnostic analysis of hydrographic and current meter data from three, rapidly repeated, fine-scale surveys of the Almeria–Oran front. Instability of the frontal boundary, between surface waters of Atlantic and Mediterranean origin, is shown to provide a mechanism for significant heat transfer from the surface layers to the deep ocean in winter. The data were collected during the second observational phase of the EU funded OMEGA project on RRS Discovery cruise 224 during December 1996. High resolution hydrographic measurements using the towed undulating CTD vehicle, SeaSoar, traced the subduction of Mediterranean Surface Water across the Almeria–Oran front. This subduction is shown to result from a significant baroclinic component to the instability of the frontal jet. The Q-vector formulation of the omega equation is combined with a scale analysis to quantitatively diagnose vertical transport resulting from mesoscale ageostrophic circulation. The analyses are presented and discussed in the presence of satellite and airborne remotely sensed data; which provide the basis for a thorough and novel approach to the determination of observational error

    Bound state equation in the Wilson loop approach with minimal surfaces

    Full text link
    The large-distance dynamics in quarkonium systems is investigated, in the large N limit, through the saturation of Wilson loop averages by minimal surfaces. Using a representation for the quark propagator in the presence of the external gluon field based on the use of path-ordered phase factors, a covariant three-dimensional bound state equation of the Breit-Salpeter type is derived, in which the interaction potentials are provided by the energy-momentum vector of the straight segment joining the quark to the antiquark and carrying a constant linear energy density, equal to the string tension. The interaction potentials are confining and reduce to the linear vector potential in the static case and receive, for moving quarks, contributions from the moments of inertia of the straight segment. The self-energy parts of the quark propagators induce spontaneous breakdown of chiral symmetry with a mechanism identical to that of the exchange of one Coulomb-gluon. The nonrelativistic and ultrarelativistic properties of the bound state spectrum are studied.Comment: 57 pages, 7 figure

    Dynamic Ordering and Transverse Depinning of a Driven Elastic String in a Disordered Media

    Full text link
    We examine the dynamics of an elastic string interacting with quenched disorder driven perpendicular and parallel to the string. We show that the string is the most disordered at the depinning transition but with increasing drive partial ordering is regained. For low drives the noise power is high and we observe a 1/f^2 noise signature crossing over to a white noise character with low power at higher drives. For the parallel driven moving string there is a finite transverse critical depinning force with the depinning transition occuring by the formation of running kinks.Comment: 4 pages, 4 postscript figure

    Driven vortices in 3D layered superconductors: Dynamical ordering along the c-axis

    Full text link
    We study a 3D model of driven vortices in weakly coupled layered superconductors with strong pinning. Above the critical force FcF_c, we find a plastic flow regime in which pancakes in different layers are uncoupled, corresponding to a pancake gas. At a higher FF, there is an ``smectic flow'' regime with short-range interlayer order, corresponding to an entangled line liquid. Later, the transverse displacements freeze and vortices become correlated along the c-axis, resulting in a transverse solid. Finally, at a force FsF_s the longitudinal displacements freeze and we find a coherent solid of rigid lines.Comment: 4 pages, 3 postscript figure

    Hall noise and transverse freezing in driven vortex lattices

    Full text link
    We study driven vortices lattices in superconducting thin films. Above the critical force FcF_c we find two dynamical phase transitions at FpF_p and FtF_t, which could be observed in simultaneous noise measurements of the longitudinal and the Hall voltage. At FpF_p there is a transition from plastic flow to smectic flow where the voltage noise is isotropic (Hall noise = longitudinal noise) and there is a peak in the differential resistance. At FtF_t there is a sharp transition to a frozen transverse solid where the Hall noise falls down abruptly and vortex motion is localized in the transverse direction.Comment: 4 pages, 3 figure
    corecore