73 research outputs found
Links between cardiovascular disease and osteoporosis in postmenopausal women: serum lipids or atherosclerosis per se?
INTRODUCTION AND HYPOTHESIS: Epidemiological observations suggest links between osteoporosis and risk of acute cardiovascular events and vice versa. Whether the two clinical conditions are linked by common pathogenic factors or atherosclerosis per se remains incompletely understood. We investigated whether serum lipids and polymorphism in the ApoE gene modifying serum lipids could be a biological linkage. METHODS: This was an observational study including 1176 elderly women 60–85 years old. Women were genotyped for epsilon (ɛ) allelic variants of the ApoE gene, and data concerning serum lipids (total cholesterol, triglycerides, HDL-C, LDL-C, apoA1, ApoB, Lp(a)), hip and spine BMD, aorta calcification (AC), radiographic vertebral fracture and self-reported wrist and hip fractures, cardiovascular events together with a wide array of demographic and lifestyle characteristics were collected. RESULTS: Presence of the ApoE ɛ4 allele had a significant impact on serum lipid profile, yet no association with spine/hip BMD or AC could be established. In multiple regression models, apoA1 was a significant independent contributor to the variation in AC. However, none of the lipid components were independent contributors to the variation in spine or hip BMD. When comparing the women with or without vertebral fractures, serum triglycerides showed significant differences. This finding was however not applicable to hip or wrist fractures. After adjustment for age, severe AC score (≥6) and/or manifest cardiovascular disease increased the risk of hip but not vertebral or wrist fractures. CONCLUSION: The contribution of serum lipids to the modulators of BMD does not seem to be direct but rather indirect via promotion of atherosclerosis, which in turn can affect bone metabolism locally, especially when skeletal sites supplied by end-arteries are concerned. Further studies are needed to explore the genetic or environmental risk factors underlying the association of low triglyceride levels to vertebral fractures
A RAC-GEF network critical for early intestinal tumourigenesis.
RAC1 activity is critical for intestinal homeostasis, and is required for hyperproliferation driven by loss of the tumour suppressor gene Apc in the murine intestine. To avoid the impact of direct targeting upon homeostasis, we reasoned that indirect targeting of RAC1 via RAC-GEFs might be effective. Transcriptional profiling of Apc deficient intestinal tissue identified Vav3 and Tiam1 as key targets. Deletion of these indicated that while TIAM1 deficiency could suppress Apc-driven hyperproliferation, it had no impact upon tumourigenesis, while VAV3 deficiency had no effect. Intriguingly, deletion of either gene resulted in upregulation of Vav2, with subsequent targeting of all three (Vav2-/- Vav3-/- Tiam1-/-), profoundly suppressing hyperproliferation, tumourigenesis and RAC1 activity, without impacting normal homeostasis. Critically, the observed RAC-GEF dependency was negated by oncogenic KRAS mutation. Together, these data demonstrate that while targeting RAC-GEF molecules may have therapeutic impact at early stages, this benefit may be lost in late stage disease
Haplotypes of intron 4 of the estrogen receptor alpha gene and hip fractures: a replication study in Caucasians
<p>Abstract</p> <p>Background</p> <p>Despite their great impact, few genetic association studies have used hip fractures as an endpoint. However, the association of two polymorphisms on intron 4 of estrogen receptor alpha (<it>ESR1</it>) with hip fractures was recently reported in a Chinese population. The aim of this study was to investigate whether such association is also present in Caucasians.</p> <p>Methods</p> <p>We analyzed those two SNPs and another neighbour SNP located on the exon 4 of <it>ESR1 </it>in 787 patients with hip fractures and 953 controls from Spain.</p> <p>Results</p> <p>The allelic frequencies differed markedly from those reported in Asian populations. Nevertheless, haplotypes including the rs3020314 and rs1884051 loci in intron 4 showed a significant association with hip fractures (omnibus test p = 0.006 in the whole group and 0.00005 in women). In the sex-stratified analysis, the association was significant in females, but not in males. In women, the CA haplotype appeared to have a protective influence, being present in 6.5% of the controls, but only in 3% of patients with fractures (odds ratio 0.39; 95% confidence interval 0.26-0.59; estimated population preventive fraction 3.5%). The inclusion of the rs1801132 SNP of exon 4 further increased the statistical significance of the association (odds ratio 0.17; 95% CI 0.08-0.37; p = 0.00001). Each SNP appeared to contribute independently to the association. No genotype-related differences in gene expression were found in 42 femoral bone samples.</p> <p>Conclusions</p> <p>This study confirms the association of some polymorphisms in the region of exon 4/intron 4 of <it>ESR1 </it>and hip fractures in women. However, there are marked differences in allele frequencies between Asian and Caucasian populations.</p
Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche.
Age at menarche is a marker of timing of puberty in females. It varies widely between individuals, is a heritable trait and is associated with risks for obesity, type 2 diabetes, cardiovascular disease, breast cancer and all-cause mortality. Studies of rare human disorders of puberty and animal models point to a complex hypothalamic-pituitary-hormonal regulation, but the mechanisms that determine pubertal timing and underlie its links to disease risk remain unclear. Here, using genome-wide and custom-genotyping arrays in up to 182,416 women of European descent from 57 studies, we found robust evidence (P < 5 × 10(-8)) for 123 signals at 106 genomic loci associated with age at menarche. Many loci were associated with other pubertal traits in both sexes, and there was substantial overlap with genes implicated in body mass index and various diseases, including rare disorders of puberty. Menarche signals were enriched in imprinted regions, with three loci (DLK1-WDR25, MKRN3-MAGEL2 and KCNK9) demonstrating parent-of-origin-specific associations concordant with known parental expression patterns. Pathway analyses implicated nuclear hormone receptors, particularly retinoic acid and γ-aminobutyric acid-B2 receptor signalling, among novel mechanisms that regulate pubertal timing in humans. Our findings suggest a genetic architecture involving at least hundreds of common variants in the coordinated timing of the pubertal transition
A Polymorphism in a Gene Encoding Perilipin 4 Is Associated with Height but not with Bone Measures in Individuals from the Framingham Osteoporosis Study
There is increasing interest in identifying new pathways and candidate genes that confer susceptibility to osteoporosis. There is evidence that adipogenesis and osteogenesis may be related, including a common bone marrow progenitor cell for both adipocytes and osteoblasts. Perilipin 1 (PLIN1) and Perilipin 4 (PLIN4) are members of the PATS family of genes and are involved in lipolysis of intracellular lipid deposits. A previous study reported gender-specific associations between one polymorphism of PLIN1 and bone mineral density (BMD) in a Japanese population. We hypothesized that polymorphisms in PLIN1 and PLIN4 would be associated with bone measures in adult Caucasian participants of the Framingham Osteoporosis Study (FOS). We genotyped 1,206 male and 1,445 female participants of the FOS for four single-nucleotide polymorphism (SNPs) in PLIN1 and seven SNPs in PLIN4 and tested for associations with measures of BMD, bone ultrasound, hip geometry, and height. We found several gender-specific significant associations with the measured traits. The association of PLIN4 SNP rs8887, G>A with height in females trended toward significance after simulation testing (adjusted P = 0.07) and remained significant after simulation testing in the combined-sex model (adjusted P = 0.033). In a large study sample of men and women, we found a significant association between one SNP in PLIN4 and height but not with bone traits, suggesting that PATS family genes are not important in the regulation of bone. Identification of genes that influence human height may lead to a better understanding of the processes involved in growth and development
VKORC1 Common Variation and Bone Mineral Density in the Third National Health and Nutrition Examination Survey
Osteoporosis, defined by low bone mineral density (BMD), is common among postmenopausal women. The distribution of BMD varies across populations and is shaped by both environmental and genetic factors. Because the candidate gene vitamin K epoxide reductase complex subunit 1 (VKORC1) generates vitamin K quinone, a cofactor for the gamma-carboxylation of bone-related proteins such as osteocalcin, we hypothesized that VKORC1 genetic variants may be associated with BMD and osteoporosis in the general population. To test this hypothesis, we genotyped six VKORC1 SNPs in 7,159 individuals from the Third National Health and Nutrition Examination Survey (NHANES III). NHANES III is a nationally representative sample linked to health and lifestyle variables including BMD, which was measured using dual energy x-ray absorptiometry (DEXA) on four regions of the proximal femur. In adjusted models stratified by race/ethnicity and sex, SNPs rs9923231 and rs9934438 were associated with increased BMD (p = 0.039 and 0.024, respectively) while rs8050894 was associated with decreased BMD (p = 0.016) among non-Hispanic black males (n = 619). VKORC1 rs2884737 was associated with decreased BMD among Mexican-American males (n = 795; p = 0.004). We then tested for associations between VKORC1 SNPs and osteoporosis, but the results did not mirror the associations observed between VKORC1 and BMD, possibly due to small numbers of cases. This is the first report of VKORC1 common genetic variation associated with BMD, and one of the few reports available that investigate the genetics of BMD and osteoporosis in diverse populations
Synopsis and meta-analysis of genetic association studies in osteoporosis for the focal adhesion family genes: the CUMAGAS-OSTEOporosis information system
<p>Abstract</p> <p>Background</p> <p>Focal adhesion (FA) family genes have been studied as candidate genes for osteoporosis, but the results of genetic association studies (GASs) are controversial. To clarify these data, a systematic assessment of GASs for FA genes in osteoporosis was conducted.</p> <p>Methods</p> <p>We developed Cumulative Meta-Analysis of GAS-OSTEOporosis (CUMAGAS-OSTEOporosis), a web-based information system that allows the retrieval, analysis and meta-analysis (for allele contrast, recessive, dominant, additive and codominant models) of data from GASs on osteoporosis with the capability of update. GASs were identified by searching the PubMed and HuGE PubLit databases.</p> <p>Results</p> <p>Data from 72 studies involving 13 variants of 6 genes were analyzed and catalogued in CUMAGAS-OSTEOporosis. Twenty-two studies produced significant associations with osteoporosis risk under any genetic model. All studies were underpowered (<50%). In four studies, the controls deviated from the Hardy-Weinberg equilibrium. Eight variants were chosen for meta-analysis, and significance was shown for the variants collagen, type I, α<sub>1 </sub>(<it>COL1A1</it>) G2046T (all genetic models), <it>COL1A1 </it>G-1997T (allele contrast and dominant model) and integrin β-chain β<sub>3 </sub>(<it>ITGB3</it>) T176C (recessive and additive models). In <it>COL1A1 </it>G2046T, subgroup analysis has shown significant associations for Caucasians, adults, females, males and postmenopausal women. A differential magnitude of effect in large versus small studies (that is, indication of publication bias) was detected for the variant <it>COL1A1 </it>G2046T.</p> <p>Conclusion</p> <p>There is evidence of an implication of FA family genes in osteoporosis. CUMAGAS-OSTEOporosis could be a useful tool for current genomic epidemiology research in the field of osteoporosis.</p
Increased Corneal Epithelial Turnover Contributes to Abnormal Homeostasis in the Pax6(+/-) Mouse Model of Aniridia
We aimed to test previous predictions that limbal epithelial stem cells (LESCs) are quantitatively deficient or qualitatively defective in Pax6(+/-) mice and decline with age in wild-type (WT) mice. Consistent with previous studies, corneal epithelial stripe patterns coarsened with age in WT mosaics. Mosaic patterns were also coarser in Pax6(+/-) mosaics than WT at 15 weeks but not at 3 weeks, which excludes a developmental explanation and strengthens the prediction that Pax6(+/-) mice have a LESC-deficiency. To investigate how Pax6 genotype and age affected corneal homeostasis, we compared corneal epithelial cell turnover and label-retaining cells (LRCs; putative LESCs) in Pax6(+/-) and WT mice at 15 and 30 weeks. Limbal BrdU-LRC numbers were not reduced in the older WT mice, so this analysis failed to support the predicted age-related decline in slow-cycling LESC numbers in WT corneas. Similarly, limbal BrdU-LRC numbers were not reduced in Pax6(+/-) heterozygotes but BrdU-LRCs were also present in Pax6(+/-) corneas. It seems likely that Pax6(+/-) LRCs are not exclusively stem cells and some may be terminally differentiated CD31-positive blood vessel cells, which invade the Pax6(+/-) cornea. It was not, therefore, possible to use this approach to test the prediction that Pax6(+/-) corneas had fewer LESCs than WT. However, short-term BrdU labelling showed that basal to suprabasal movement (leading to cell loss) occurred more rapidly in Pax6(+/-) than WT mice. This implies that epithelial cell loss is higher in Pax6(+/-) mice. If increased corneal epithelial cell loss exceeds the cell production capacity it could cause corneal homeostasis to become unstable, resulting in progressive corneal deterioration. Although it remains unclear whether Pax6(+/-) mice have LESC-deficiency, we suggest that features of corneal deterioration, that are often taken as evidence of LESC-deficiency, might occur in the absence of stem cell deficiency if corneal homeostasis is destabilised by excessive cell loss
- …