474 research outputs found

    Quaternary structure of a G-protein coupled receptor heterotetramer in complex with Gi and Gs

    Get PDF
    Background: G-protein-coupled receptors (GPCRs), in the form of monomers or homodimers that bind heterotrimeric G proteins, are fundamental in the transfer of extracellular stimuli to intracellular signaling pathways. Different GPCRs may also interact to form heteromers that are novel signaling units. Despite the exponential growth in the number of solved GPCR crystal structures, the structural properties of heteromers remain unknown. Results: We used single-particle tracking experiments in cells expressing functional adenosine A1-A2A receptors fused to fluorescent proteins to show the loss of Brownian movement of the A1 receptor in the presence of the A2A receptor, and a preponderance of cell surface 2:2 receptor heteromers (dimer of dimers). Using computer modeling, aided by bioluminescence resonance energy transfer assays to monitor receptor homomerization and heteromerization and G-protein coupling, we predict the interacting interfaces and propose a quaternary structure of the GPCR tetramer in complex with two G proteins. Conclusions: The combination of results points to a molecular architecture formed by a rhombus-shaped heterotetramer, which is bound to two different interacting heterotrimeric G proteins (Gi and Gs). These novel results constitute an important advance in understanding the molecular intricacies involved in GPCR function

    Why do women invest in pre-pregnancy health and care? A qualitative investigation with women attending maternity services

    Get PDF
    Background Despite the importance attributed to good pre-pregnancy care and its potential to improve pregnancy and child health outcomes, relatively little is known about why women invest in pre-pregnancy health and care. We sought to gain insight into why women invested in pre-pregnancy health and care. Methods We carried out 20 qualitative in-depth interviews with pregnant or recently pregnant women who were drawn from a survey of antenatal clinic attendees in London, UK. Interviewees were purposively sampled to include high and low investors in pre-pregnancy health and care, with variation in age, partnership status, ethnicity and pre-existing medical conditions. Data analysis was conducted using the Framework method. Results We identified three groups in relation to pre-pregnancy health and care: 1) The “prepared” group, who had high levels of pregnancy planning and mostly positive attitudes to micronutrient supplementation outside of pregnancy, carried out pre-pregnancy activities such as taking folic acid and making changes to diet and lifestyle. 2) The “poor knowledge” group, who also had high levels of pregnancy planning, did not carry out pre-pregnancy activities and described themselves as having poor knowledge. Elsewhere in their interviews they expressed a strong dislike of micronutrient supplementation. 3) The “absent pre-pregnancy period” group, had the lowest levels of pregnancy planning and also expressed anti-supplement views. Even discussing the pre-pregnancy period with this group was difficult as responses to questions quickly shifted to focus on pregnancy itself. Knowledge of folic acid was poor in all groups. Conclusion Different pre-pregnancy care approaches are likely to be needed for each of the groups. Among the “prepared” group, who were proactive and receptive to health messages, greater availability of information and better response from health professionals could improve the range of pre-pregnancy activities carried out. Among the “poor knowledge” group, better response from health professionals might yield greater uptake of pre-pregnancy information. A different, general health strategy might be more appropriate for the “absent pre-pregnancy period” group. The fact that general attitudes to micronutrient supplementation were closely related to whether or not women invested in pre-pregnancy health and care was an unanticipated finding and warrants further investigation.This report is independent research commissioned and funded by the Department of Health Policy Research Programme Pre-Pregnancy Health and Care in England: Exploring Implementation and Public Health Impact, 006/0068

    Putative role of the adenosine A3 receptor in the antiproliferative action of N6-(2-isopentenyl)adenosine

    Get PDF
    We tested a panel of naturally occurring nucleosides for their affinity towards adenosine receptors. Both N6-(2-isopentenyl)adenosine (IPA) and racemic zeatin riboside were shown to be selective human adenosine A3 receptor (hA3R) ligands with affinities in the high nanomolar range (Ki values of 159 and 649 nM, respectively). These values were comparable to the observed Ki value of adenosine on hA3R, which was 847 nM in the same radioligand binding assay. IPA also bound with micromolar affinity to the rat A3R. In a functional assay in Chinese hamster ovary cells transfected with hA3R, IPA and zeatin riboside inhibited forskolin-induced cAMP formation at micromolar potencies. The effect of IPA could be blocked by the A3R antagonist VUF5574. Both IPA and reference A3R agonist 2-chloro-N6-(3-iodobenzyl)adenosine-5′-N-methylcarboxamide (Cl-IB-MECA) have known antitumor effects. We demonstrated strong and highly similar antiproliferative effects of IPA and Cl-IB-MECA on human and rat tumor cell lines LNCaP and N1S1. Importantly, the antiproliferative effect of low concentrations of IPA on LNCaP cells could be fully blocked by the selective A3R antagonist MRS1523. At higher concentrations, IPA appeared to inhibit cell growth by an A3R-independent mechanism, as was previously reported for other A3R agonists. We used HPLC to investigate the presence of endogenous IPA in rat muscle tissue, but we could not detect the compound. In conclusion, the antiproliferative effects of the naturally occurring nucleoside IPA are at least in part mediated by the A3R

    Lessons Learned from a Decade of Sudden Oak Death in California: Evaluating Local Management

    Get PDF
    Sudden Oak Death has been impacting California’s coastal forests for more than a decade. In that time, and in the absence of a centrally organized and coordinated set of mandatory management actions for this disease in California’s wildlands and open spaces, many local communities have initiated their own management programs. We present five case studies to explore how local-level management has attempted to control this disease. From these case studies, we glean three lessons: connections count, scale matters, and building capacity is crucial. These lessons may help management, research, and education planning for future pest and disease outbreaks

    Histone Deacetylase Inhibitors Downregulate Checkpoint Kinase 1 Expression to Induce Cell Death in Non-Small Cell Lung Cancer Cells

    Get PDF
    Background: Histone deacetylase inhibitors (HDACis) are promising anticancer drugs; however, the molecular mechanisms leading to HDACi-induced cell death have not been well understood and no clear mechanism of resistance has been elucidated to explain limited efficacy of HDACis in clinical trials. Methods and Findings: Here, we show that protein levels of checkpoint kinase 1 (Chk1), which has a major role in G2 cell cycle checkpoint regulation, was markedly reduced at the protein and transcriptional levels in lung cancer cells treated with pan-and selective HDACis LBH589, scriptaid, valproic acid, apicidin, and MS-275. In HDACi treated cells Chk1 function was impaired as determined by decreased inhibitory phosphorylation of cdc25c and its downstream target cdc2 and increased expression of cdc25A and phosphorylated histone H3, a marker of mitotic entry. In time course experiments, Chk1 downregulation occurred after HDACi treatment, preceding apoptosis. Ectopic expression of Chk1 overcame HDACiinduced cell death, and pretreating cells with the cdc2 inhibitor purvalanol A blocked entry into mitosis and prevented cell death by HDACis. Finally, pharmacological inhibition of Chk1 showed strong synergistic effect with LBH589 in lung cancer cells. Conclusions: These results define a pathway through which Chk1 inhibition can mediate HDACi-induced mitotic entry and cell death and suggest that Chk1 could be an early pharmacodynamic marker to assess HDACi efficacy in clinical samples

    A Comparison of rpoB and 16S rRNA as Markers in Pyrosequencing Studies of Bacterial Diversity

    Get PDF
    Background: The 16S rRNA gene is the gold standard in molecular surveys of bacterial and archaeal diversity, but it has the disadvantages that it is often multiple-copy, has little resolution below the species level and cannot be readily interpreted in an evolutionary framework. We compared the 16S rRNA marker with the single-copy, protein-coding rpoB marker by amplifying and sequencing both from a single soil sample. Because the higher genetic resolution of the rpoB gene prohibits its use as a universal marker, we employed consensus-degenerate primers targeting the Proteobacteria. <p/>Methodology/Principal Findings: Pyrosequencing can be problematic because of the poor resolution of homopolymer runs. As these erroneous runs disrupt the reading frame of protein-coding sequences, removal of sequences containing nonsense mutations was found to be a valuable filter in addition to flowgram-based denoising. Although both markers gave similar estimates of total diversity, the rpoB marker revealed more species, requiring an order of magnitude fewer reads to obtain 90% of the true diversity. The application of population genetic methods was demonstrated on a particularly abundant sequence cluster. <p/>Conclusions/Significance: The rpoB marker can be a complement to the 16S rRNA marker for high throughput microbial diversity studies focusing on specific taxonomic groups. Additional error filtering is possible and tests for recombination or selection can be employed

    IgG responses to the gSG6-P1 salivary peptide for evaluating human exposure to Anopheles bites in urban areas of Dakar region, Sénégal

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Urban malaria can be a serious public health problem in Africa. Human-landing catches of mosquitoes, a standard entomological method to assess human exposure to malaria vector bites, can lack sensitivity in areas where exposure is low. A simple and highly sensitive tool could be a complementary indicator for evaluating malaria exposure in such epidemiological contexts. The human antibody response to the specific <it>Anopheles </it>gSG6-P1 salivary peptide have been described as an adequate tool biomarker for a reliable assessment of human exposure level to <it>Anopheles </it>bites. The aim of this study was to use this biomarker to evaluate the human exposure to <it>Anopheles </it>mosquito bites in urban settings of Dakar (Senegal), one of the largest cities in West Africa, where <it>Anopheles </it>biting rates and malaria transmission are supposed to be low.</p> <p>Methods</p> <p>One cross-sectional study concerning 1,010 (505 households) children (n = 505) and adults (n = 505) living in 16 districts of downtown Dakar and its suburbs was performed from October to December 2008. The IgG responses to gSG6-P1 peptide have been assessed and compared to entomological data obtained in or near the same district.</p> <p>Results</p> <p>Considerable individual variations in anti-gSG6-P1 IgG levels were observed between and within districts. In spite of this individual heterogeneity, the median level of specific IgG and the percentage of immune responders differed significantly between districts. A positive and significant association was observed between the exposure levels to <it>Anopheles gambiae </it>bites, estimated by classical entomological methods, and the median IgG levels or the percentage of immune responders measuring the contact between human populations and <it>Anopheles </it>mosquitoes. Interestingly, immunological parameters seemed to better discriminate the exposure level to <it>Anopheles </it>bites between different exposure groups of districts.</p> <p>Conclusions</p> <p>Specific human IgG responses to gSG6-P1 peptide biomarker represent, at the population and individual levels, a credible new alternative tool to assess accurately the heterogeneity of exposure level to <it>Anopheles </it>bites and malaria risk in low urban transmission areas. The development of such biomarker tool would be particularly relevant for mapping and monitoring malaria risk and for measuring the efficiency of vector control strategies in these specific settings.</p

    Disruption of Neuronal Autophagy by Infected Microglia Results in Neurodegeneration

    Get PDF
    There is compelling evidence to support the idea that autophagy has a protective function in neurons and its disruption results in neurodegenerative disorders. Neuronal damage is well-documented in the brains of HIV-infected individuals, and evidence of inflammation, oxidative stress, damage to synaptic and dendritic structures, and neuronal loss are present in the brains of those with HIV-associated dementia. We investigated the role of autophagy in microglia-induced neurotoxicity in primary rodent neurons, primate and human models. We demonstrate here that products of simian immunodeficiency virus (SIV)-infected microglia inhibit neuronal autophagy, resulting in decreased neuronal survival. Quantitative analysis of autophagy vacuole numbers in rat primary neurons revealed a striking loss from the processes. Assessment of multiple biochemical markers of autophagic activity confirmed the inhibition of autophagy in neurons. Importantly, autophagy could be induced in neurons through rapamycin treatment, and such treatment conferred significant protection to neurons. Two major mediators of HIV-induced neurotoxicity, tumor necrosis factor-α and glutamate, had similar effects on reducing autophagy in neurons. The mRNA level of p62 was increased in the brain in SIV encephalitis and as well as in brains from individuals with HIV dementia, and abnormal neuronal p62 dot structures immunoreactivity was present and had a similar pattern with abnormal ubiquitinylated proteins. Taken together, these results identify that induction of deficits in autophagy is a significant mechanism for neurodegenerative processes that arise from glial, as opposed to neuronal, sources, and that the maintenance of autophagy may have a pivotal role in neuroprotection in the setting of HIV infection

    Olanzapine-Induced Hyperphagia and Weight Gain Associate with Orexigenic Hypothalamic Neuropeptide Signaling without Concomitant AMPK Phosphorylation

    Get PDF
    The success of antipsychotic drug treatment in patients with schizophrenia is limited by the propensity of these drugs to induce hyperphagia, weight gain and other metabolic disturbances, particularly evident for olanzapine and clozapine. However, the molecular mechanisms involved in antipsychotic-induced hyperphagia remain unclear. Here, we investigate the effect of olanzapine administration on the regulation of hypothalamic mechanisms controlling food intake, namely neuropeptide expression and AMP-activated protein kinase (AMPK) phosphorylation in rats. Our results show that subchronic exposure to olanzapine upregulates neuropeptide Y (NPY) and agouti related protein (AgRP) and downregulates proopiomelanocortin (POMC) in the arcuate nucleus of the hypothalamus (ARC). This effect was evident both in rats fed ad libitum and in pair-fed rats. Of note, despite weight gain and increased expression of orexigenic neuropeptides, subchronic administration of olanzapine decreased AMPK phosphorylation levels. This reduction in AMPK was not observed after acute administration of either olanzapine or clozapine. Overall, our data suggest that olanzapine-induced hyperphagia is mediated through appropriate changes in hypothalamic neuropeptides, and that this effect does not require concomitant AMPK activation. Our data shed new light on the hypothalamic mechanism underlying antipsychotic-induced hyperphagia and weight gain, and provide the basis for alternative targets to control energy balance
    corecore