26 research outputs found

    K201 (JTV-519) alters the spatiotemporal properties of diastolic Ca2+ release and the associated diastolic contraction during β-adrenergic stimulation in rat ventricular cardiomyocytes

    Get PDF
    K201 has previously been shown to reduce diastolic contractions in vivo during β-adrenergic stimulation and elevated extracellular calcium concentration ([Ca2+]o). The present study characterised the effect of K201 on electrically stimulated and spontaneous diastolic sarcoplasmic reticulum (SR)-mediated Ca2+ release and contractile events in isolated rat cardiomyocytes during β-adrenergic stimulation and elevated [Ca2+]o. Parallel experiments using confocal microscopy examined spontaneous diastolic Ca2+ release events at an enhanced spatiotemporal resolution. 1.0 μmol/L K201 in the presence of 150 nmol/L isoproterenol (ISO) and 4.75 mmol/L [Ca2+]o significantly decreased the amplitude of diastolic contractions to ~16% of control levels. The stimulated free Ca2+ transient amplitude was significantly reduced, but stimulated cell shortening was not significantly altered. When intracellular buffering was taken into account, K201 led to an increase in action potential-induced SR Ca2+ release. Myofilament sensitivity to Ca2+ was not changed by K201. Confocal microscopy revealed diastolic events composed of multiple Ca2+ waves (2–3) originating at various points along the cardiomyocyte length during each diastolic period. 1.0 μmol/L K201 significantly reduced the (a) frequency of diastolic events and (b) initiation points/diastolic interval in the remaining diastolic events to 61% and 71% of control levels respectively. 1.0 μmol/L K201 can reduce the probability of spontaneous diastolic Ca2+ release and their associated contractions which may limit the propensity for the contractile dysfunction observed in vivo

    FKBP12 Activates the Cardiac Ryanodine Receptor Ca2+-Release Channel and Is Antagonised by FKBP12.6

    Get PDF
    Changes in FKBP12.6 binding to cardiac ryanodine receptors (RyR2) are implicated in mediating disturbances in Ca2+-homeostasis in heart failure but there is controversy over the functional effects of FKBP12.6 on RyR2 channel gating. We have therefore investigated the effects of FKBP12.6 and another structurally similar molecule, FKBP12, which is far more abundant in heart, on the gating of single sheep RyR2 channels incorporated into planar phospholipid bilayers and on spontaneous waves of Ca2+-induced Ca2+-release in rat isolated permeabilised cardiac cells. We demonstrate that FKBP12 is a high affinity activator of RyR2, sensitising the channel to cytosolic Ca2+, whereas FKBP12.6 has very low efficacy, but can antagonise the effects of FKBP12. Mathematical modelling of the data shows the importance of the relative concentrations of FKBP12 and FKBP12.6 in determining RyR2 activity. Consistent with the single-channel results, physiological concentrations of FKBP12 (3 µM) increased Ca2+-wave frequency and decreased the SR Ca2+-content in cardiac cells. FKBP12.6, itself, had no effect on wave frequency but antagonised the effects of FKBP12

    HRS/EHRA/APHRS Expert Consensus Statement on the Diagnosis and Management of Patients with Inherited Primary Arrhythmia Syndromes

    Get PDF
    Non disponibil

    Flecainide and antiarrhythmic effects in a mouse model of catecholaminergic polymorphic ventricular tachycardia

    No full text
    Recent studies have shown that flecainide may be an effective therapy to prevent life-threatening arrhythmias in patients with catecholaminergic polymorphic ventricular tachycardia. Several hypotheses have been advanced to explain the antiarrhythmic mechanism of flecainide, including Na(+) channel blockade and a direct inhibitory action on the ryanodine receptor. In this article, we review the current literature on the topic and summarize the elements of the existing debate

    In the RyR2R4496C Mouse Model of CPVT, {beta}-Adrenergic Stimulation Induces Ca Waves by Increasing SR Ca Content and Not by Decreasing the Threshold for Ca Waves.

    No full text
    RATIONALE: mutations of the ryanodine receptor (RyR) cause catecholaminergic polymorphic ventricular tachycardia (CPVT). These mutations predispose to the generation of Ca waves and delayed afterdepolarizations during adrenergic stimulation. Ca waves occur when either sarcoplasmic reticulum (SR) Ca content is elevated above a threshold or the threshold is decreased. Which of these occurs in cardiac myocytes expressing CPVT mutations is unknown. OBJECTIVE: we tested whether the threshold SR Ca content is different between control and CPVT and how it relates to SR Ca content during β-adrenergic stimulation. METHODS AND RESULTS: ventricular myocytes from the RyR2 R4496C(+/-) mouse model of CPVT and wild-type (WT) controls were voltage-clamped; diastolic SR Ca content was measured and compared with the Ca wave threshold. The results showed the following. (1) In 1 mmol/L [Ca(2+)](o), β-adrenergic stimulation with isoproterenol (1μmol/L) caused Ca waves only in R4496C. (2) SR Ca content and Ca wave threshold in R4496C were lower than those in WT. (3) β-Adrenergic stimulation increased SR Ca content by a similar amount in both R4496C and WT. (4) β-Adrenergic stimulation increased the threshold for Ca waves. (5) During β-adrenergic stimulation in R4496C, but not WT, the increase of SR Ca was sufficient to reach threshold and produce Ca waves. CONCLUSIONS: in the R4496C CPVT model, the RyR is leaky, and this lowers both SR Ca content and the threshold for waves. β-Adrenergic stimulation produces Ca waves by increasing SR Ca content and not by lowering threshold
    corecore