33 research outputs found

    Robustness in Glyoxylate Bypass Regulation

    Get PDF
    The glyoxylate bypass allows Escherichia coli to grow on carbon sources with only two carbons by bypassing the loss of carbons as CO2 in the tricarboxylic acid cycle. The flux toward this bypass is regulated by the phosphorylation of the enzyme isocitrate dehydrogenase (IDH) by a bifunctional kinase–phosphatase called IDHKP. In this system, IDH activity has been found to be remarkably robust with respect to wide variations in the total IDH protein concentration. Here, we examine possible mechanisms to explain this robustness. Explanations in which IDHKP works simultaneously as a first-order kinase and as a zero-order phosphatase with a single IDH binding site are found to be inconsistent with robustness. Instead, we suggest a robust mechanism where both substrates bind the bifunctional enzyme to form a ternary complex

    Decrease in topoisomerase I is responsible for activation-induced cytidine deaminase (AID)-dependent somatic hypermutation

    Get PDF
    Somatic hypermutation (SHM) and class-switch recombination (CSR) of the Ig gene require both the transcription of the locus and the expression of activation-induced cytidine deaminase (AID). During CSR, AID decreases the amount of topoisomerase I (Top1); this decrease alters the DNA structure and induces cleavage in the S region. Similarly, Top1 is involved in transcription-associated mutation at dinucleotide repeats in yeast and in triplet-repeat contraction in mammals. Here, we report that the AID-induced decrease in Top1 is critical for SHM. Top1 knockdown or haploinsufficiency enhanced SHM, whereas Top1 overexpression down-regulated it. A specific Top1 inhibitor, camptothecin, suppressed SHM, indicating that Top1's activity is required for DNA cleavage. Nonetheless, suppression of transcription abolished SHM, even in cells with Top1 knockdown, suggesting that transcription is critical. These results are consistent with a model proposed for CSR and triplet instability, in which transcription-induced non-B structure formation is enhanced by Top1 reduction and provides the target for irreversible cleavage by Top1. We speculate that the mechanism for transcription-coupled genome instability was adopted to generate immune diversity when AID evolved

    Dodecamer repeat expansion in cystatin B gene in progressive myoclonus epilepsy

    No full text
    Progressive myoclonus epilepsy of the Unverricht-Lundborg type (EPM1; MIM 254800) is an autosomal recessive disorder with onset between 6 and 13 years followed by variable progression to mental deterioration and cerebellar ataxia. It is a rare disorder but more common in Finland (1 in 20,000) and the western Mediterranean. Two point mutations in the cysteine proteinase inhibitor gene cystatin B (CSTB), proved that this gene is responsible for EPM1 (ref. 3). An extensive search in the CSTB gene revealed mutations accounting only for 14% of the 58 unrelated EPM1 alleles studied. Here we report that the majority of EPM1 alleles contain expansions of a dodecamer (12-mer) repeat located about 70 nucleotides upstream of the transcription start site nearest to the 5' end of the CSTB gene. Normal alleles contain 2 or 3 copies of this repeat whereas mutant alleles contain more than 60 such repeats and have reduced levels of CSTB messenger RNA in blood but not in cell lines. 'Premutation' CSTB alleles with 12-17 repeats show marked instability when transmitted to offspring
    corecore