171 research outputs found

    Numerical modelling and in-situ experiment for self-sealing of the induced fracture network of drift into the Callovo-Oxfordian claystone during a hydration process

    Get PDF
    The excavation damage zone surrounding an underground tunnel/gallery, and in particular its evolution, is being studied for the performance assessment of a radioactive waste underground repository. This paper focuses on numerical analysis of the self-sealing of the damaged zone based on an in-situ CDZ experiment for exploring the self-sealing of excavation damage zone during a hydration process. A plastic damage model is employed to describe the mechanical behaviour of Callovo-Oxfordian claystone (COx), and an added deformation model coupled with the standard Biot's model to simulate the significant deformation of COx claystone during the change of water content. Crack estimation and permeability evaluation of unsaturated fractured COx claystone are carried out through a post-processing method based on the fracture energy regularization and the cubic law, respectively. The validation of the proposed model is performed by numerical simulation of: (1) COx claystone swelling and triaxial compression tests, (2) self-sealing of fractured COx claystone samples during hydration process, (3) self-sealing of the damaged zone during a hydration process. Comparisons between the numerical and experimental results demonstrate the reliability of the proposed model to accurately describe the self-sealing of the fractured COx claystone, and the global water permeability reduction in hydration illustrates the accomplishment of the self-sealing of damaged zone

    Earth stabilisation via carbonate precipitation by plant-derived urease for building applications

    Get PDF
    Raw (unfired) earth represents a sustainable and efficient alternative to traditional construction materials but its dissemination into building practice has been hindered by a relatively high vulnerability to water erosion. Enzyme induced carbonate precipitation (EICP) can improve the durability of earth materials without using traditional chemical binders such as cement and lime. EICP utilises the urease enzyme to catalyse the hydrolysis of urea, which produces carbonate ions that react with the calcium ions dissolved in the pore water, thus resulting in the precipitation of calcium carbonate. The calcium carbonate fills the soil voids and binds particles together, which reduces water permeability and increases material strength. The urease enzyme is a hexameric protein that is found in the tissues of many common plants. This work proposes a low-cost and simple stabilisation technology that makes use of crude urease enzyme extracted from soybeans. This technology is applied to the stabilisation of compacted earth, whose properties are then assessed via unconfined compression, moisture buffering and durability tests. The findings suggest a noticeable improvement of material strength and durability, though further investigation is necessary to increase the competitiveness of EICP stabilisation against standard techniques using cement and lime

    A comparative study of the effects of particle grading and compaction effort on the strength and stiffness of earth building materials at different humidity levels

    Get PDF
    This paper presents an investigation of the mechanical properties of three different earth building materials manufactured by compacting two soils with distinct particle size distributions under two markedly different efforts. Multiple samples of each material have been equalised either inside a climatic chamber at different humidity levels or oven-dried, before being subjected to shearing inside a triaxial cell to measure the corresponding levels of strength and stiffness. Triaxial shearing has been performed under different levels of radial stress to investigate the effect of material confinement inside thick walls. Consistent with previous research, the study has indicated that strength and stiffness increase as ambient humidity reduces and degree of saturation decreases, though the actual variation of these properties strongly depends on the dry density and clay content of the material. Most importantly, particle grading has emerged as a key material parameter, whose impact on earth building has often been overlooked. Particle grading appears to influence strength and stiffness even more than compaction effort, dry density and average particle size, which are usually quoted as the most important variables for the design of earth building materials

    Signals of Bose Einstein condensation and Fermi quenching in the decay of hot nuclear systems

    Get PDF
    We report experimental signals of Bose-Einstein condensation in the decay of hot Ca projectile-like sources produced in mid-peripheral collisions at sub-Fermi energies. The experimental setup, constituted by the coupling of the INDRA 4π\pi detector array to the forward angle VAMOS magnetic spectrometer, allowed us to reconstruct the mass, charge and excitation energy of the decaying hot projectile-like sources. Furthermore, by means of quantum fluctuation analysis techniques, temperatures and mean volumes per particle "as seen by" bosons and fermions separately are correlated to the excitation energy of the reconstructed system. The obtained results are consistent with the production of dilute mixed (bosons/fermions) systems, where bosons experience a smaller volume as compared to the surrounding fermionic gas. Our findings recall similar phenomena observed in the study of boson condensates in atomic traps.Comment: Submitted to Phys. Rev. Lett. (december 2014

    Production of α\alpha-particle condensate states in heavy-ion collisions

    Full text link
    The fragmentation of quasi-projectiles from the nuclear reaction 40Ca^{40}Ca + 12C^{12}C at 25 MeV/nucleon was used to produce excited states candidates to α\alpha-particle condensation. The experiment was performed at LNS-Catania using the CHIMERA multidetector. Accepting the emission simultaneity and equality among the α\alpha-particle kinetic energies as experimental criteria for deciding in favor of the condensate nature of an excited state, we analyze the 02+0_2^+ and 22+2_2^+ states of 12^{12}C and the 06+0_6^+ state of 16^{16}O. A sub-class of events corresponding to the direct 3-α\alpha decay of the Hoyle state is isolated.Comment: contribution to the 2nd Workshop on "State of the Art in Nuclear Cluster Physics" (SOTANCP2), Universite Libre de Bruxelles (Belgium), May 25-28, 2010, to be published in the International Journal of Modern Physics

    Evidence for a Novel Reaction Mechanism of a Prompt Shock-Induced Fission Following the Fusion of 78Kr and 40Ca Nuclei at E/A =10 MeV

    Full text link
    An analysis of experimental data from the inverse-kinematics ISODEC experiment on 78Kr+40Ca reaction at a bombarding energy of 10 AMeV has revealed signatures of a hitherto unknown reaction mechanism, intermediate between the classical damped binary collisions and fusion-fission, but also substantially different from what is being termed in the literature as fast fission or quasi fission. These signatures point to a scenario where the system fuses transiently while virtually equilibrating mass asymmetry and energy and, yet, keeping part of the energy stored in a collective shock-imparted and, possibly, angular momentum bearing form of excitation. Subsequently the system fissions dynamically along the collision or shock axis with the emerging fragments featuring a broad mass spectrum centered around symmetric fission, relative velocities somewhat higher along the fission axis than in transverse direction, and virtually no intrinsic spin. The class of massasymmetric fission events shows a distinct preference for the more massive fragments to proceed along the beam direction, a characteristic reminiscent of that reported earlier for dynamic fragmentation of projectile-like fragments alone and pointing to the memory of the initial mass and velocity distribution.Comment: 5 PAGES, 6 FIGURE

    Influence of Neutron Enrichment on Disintegration Modes of Compound Nuclei

    Full text link
    Cross sections, kinetic energy and angular distributions of fragments with charge 6≀\leZ≀\le28 emitted in 78,82Kr+40C at 5.5 MeV/A reactions were measured at the GANIL facility using the INDRA apparatus. This experiment aims to investigate the influence of the neutron enrichment on the decay mechanism of excited nuclei. Data are discussed in comparison with predictions of transition state and Hauser-Feshbach models.Comment: 8 pages, 1 figure, paper presented at the First Workshop on "State of the Art in Nuclear Cluster Physics" 13-16 May, 2008, at Strasbourg, France (SOTANCP2008) and accepted for publication at International Journal of Modern Physics E (Special Issue), Proceedings of SOTANCP2008 (to be published

    Multifragmentation of a very heavy nuclear system (II): bulk properties and spinodal decomposition

    Full text link
    The properties of fragments and light charged particles emitted in multifragmentation of single sources formed in central 36AMeV Gd+U collisions are reviewed. Most of the products are isotropically distributed in the reaction c.m. Fragment kinetic energies reveal the onset of radial collective energy. A bulk effect is experimentally evidenced from the similarity of the charge distribution with that from the lighter 32AMeV Xe+Sn system. Spinodal decomposition of finite nuclear matter exhibits the same property in simulated central collisions for the two systems, and appears therefore as a possible mechanism at the origin of multifragmentation in this incident energy domain.Comment: 28 pages including 14 figures; submitted to Nucl. Phys.

    Projected Quasi-particle Perturbation theory

    Full text link
    The BCS and/or HFB theories are extended by treating the effect of four quasi-particle states perturbatively. The approach is tested on the pairing hamiltonian, showing that it combines the advantage of standard perturbation theory valid at low pairing strength and of non-perturbative approaches breaking particle number valid at higher pairing strength. Including the restoration of particle number, further improves the description of pairing correlation. In the presented test, the agreement between the exact solution and the combined perturbative + projection is almost perfect. The proposed method scales friendly when the number of particles increases and provides a simple alternative to other more complicated approaches
    • 

    corecore