9 research outputs found

    Titan's lakes chemical composition: sources of uncertainties and variability

    Full text link
    Between 2004 and 2007 the instruments of the CASSINI spacecraft discovered hydrocarbon lakes in the polar regions of Titan. We have developed a lake-atmosphere equilibrium model allowing the determination of the chemical composition of these liquid areas. The model is based on uncertain thermodynamic data and precipitation rates of organic species predicted to be present in the lakes and seas that are subject to spatial and temporal variations. Here we explore and discuss the influence of these uncertainties and variations. The errors and uncertainties relevant to thermodynamic data are simulated via Monte-Carlo simulations. Global Circulation Models (GCM) are also employed in order to investigate the possibility of chemical asymmetry between the south and the north poles, due to differences in precipitation rates. We find that mole fractions of compounds in the liquid phase have a high sensitivity to thermodynamic data used as inputs, in particular molar volumes and enthalpies of vaporization. When we combine all considered uncertainties, the ranges of obtained mole fractions are rather large (up to ~8500%) but the distributions of values are narrow. The relative standard deviations remain between 10% and ~300% depending on the compound considered. Compared to other sources of uncertainties and variability, deviation caused by surface pressure variations are clearly negligible, remaining of the order of a few percent up to ~20%. Moreover no significant difference is found between the composition of lakes located in north and south poles. Because the theory of regular solutions employed here is sensitive to thermodynamic data and is not suitable for polar molecules such as HCN and CH3CN, our work strongly underlines the need for experimental simulations and the improvement of Titan's atmospheric models.Comment: Accepted in Planetary and Space Scienc

    The Effects of Resistance Training Volume on Skeletal Muscle Proteome

    Get PDF
    International Journal of Exercise Science 10(7): 1051-1066, 2017. Studies are conflicting to whether low volume resistance training (RT) is as effective as high-volume RT protocols with respect to promoting morphological and molecular adaptations. Thus, the aim of the present study was to compare, using a climbing a vertical ladder, the effects of 8 weeks, 3 times per week, resistance training with 4 sets (RT4), resistance training with 8 sets (RT8) and without resistance training control (CON) on gastrocnemius muscle proteome using liquid chromatography mass spectrometry (LC-MS/MS) and cross sectional area (CSA) of rats. Fifty-two proteins were identified by LC-MS/MS, with 39 in common between the three groups, two in common between RT8 and CON, one in common between RT8 and RT4, four exclusive in the CON, one in the RT8, and four in the RT4. The RT8 group had a reduced abundance of 12 proteins, mostly involved in muscle protein synthesis, carbohydrate metabolism, tricarboxylic acid cycle, anti-oxidant defense, and oxygen transport. Otherwise one protein involved with energy transduction as compared with CON group showed high abundance. There was no qualitative protein abundance difference between RT4 and CON groups. These results revealed that high volume RT induced undesirable disturbances on skeletal muscle proteins, while lower volume RT resulted in similar gains in skeletal muscle hypertrophy without impairment of proteome. The CSA was significantly higher in RT8 group when compared to RT4 group, which was significantly higher than CON group. However, no differences were found between trained groups when the gastrocnemius CSA were normalized by the total body weight

    Hydrogen chloride ClH + CF4 Tetrafluoromethane

    No full text

    Dinitrogen oxide N2O + ClH Hydrogen chloride

    No full text

    Error analysis in Barker's method: extension to ternary systems

    Get PDF
    An extension of Barker's method to ternary systems is briefly outlined. Expressions for the standard deviations of the excess molar Gibbs free energy and the equilibrium pressure as functions of composition are obtained. These expressions are applied to accurate experimental data for the cryogenic (liquid) mixture CH3F+N2O+Xe recently measured in our laboratory.http://www.sciencedirect.com/science/article/B6TG2-3VGSGDR-4/1/e3c29abb1f0602ee677ab2a9887b8ee

    The fusion curves of xenon, krypton, and argon

    Get PDF
    The experimental results on the fusion of the heavier rare gases at very high pressures, obtained in the last 20 years, are examined and analysed in conjunction with the measurements made at lower pressures from 1940 onwards. The parameters in the Simon equation for the melting curves of Xe, Kr, and Ar are determined, and the coordinates of a possible high-pressure {s(fcc) + s(hcp) + l} triple-point are identified for each one of these three elements. The enthalpies of transition of the transformations involved are estimated as well as their respective values of the entropies of transition.http://www.sciencedirect.com/science/article/B6WHM-4R6B2R8-1/1/b0b0f09c6f21e6deaf5d2a51875db54

    The genome sequence of the malaria mosquito Anopheles gambiae

    No full text
    Anopheles gambiae is the principal vector of malaria, a disease that afflicts more than 500 million people and causes more than 1 million deaths each year. Tenfold shotgun sequence coverage was obtained from the PEST strain of A. gambiae and assembled into scaffolds that span 278 million base pairs. A total of 91% of the genome was organized in 303 scaffolds; the largest scaffold was 23.1 million base pairs. There was substantial genetic variation within this strain, and the apparent existence of two haplotypes of approximately equal frequency ("dual haplotypes") in a substantial fraction of the genome likely reflects the outbred nature of the PEST strain. The sequence produced a conservative inference of more than 400,000 single-nucleotide polymorphisms that showed a markedly bimodal density distribution. Analysis of the genome sequence revealed strong evidence for about 14,000 protein-encoding transcripts. Prominent expansions in specific families of proteins likely involved in cell adhesion and immunity were noted. An expressed sequence tag analysis of genes regulated by blood feeding provided insights into the physiological adaptations of a hematophagous insect
    corecore