111 research outputs found

    Geophysical Computer Program 11

    Get PDF
    Program HYPOERR evaluates the performance of a small network of arbitrary seismic arrays in determining coordinates and times of seismic events. A linearized inversion following the method of Uhrhammer (1980)is performed for a layered velocity structure by determining the eigenvalues and eigenvectors of the partial derivatives of travel time for P and/or S phases with respect to hypocenter position and origin time for each station in the array. A series of covariance matrices is then obtained to evaluate statistical errors for a specified grid of hypocenter locations at any given depth. Contour plots can then be made of the matrix elements by using standard contouring software. Examples are given for ( 1) the case of a hypothetical quadrapartite array and (2) an actual eight-station ocean-bottom seismometer array deployed around the 95.5° W. Galapagos propagating-rift zone

    A multi-stage genome-wide association study of bladder cancer identifies multiple susceptibility loci.

    Get PDF
    We conducted a multi-stage, genome-wide association study of bladder cancer with a primary scan of 591,637 SNPs in 3,532 affected individuals (cases) and 5,120 controls of European descent from five studies followed by a replication strategy, which included 8,382 cases and 48,275 controls from 16 studies. In a combined analysis, we identified three new regions associated with bladder cancer on chromosomes 22q13.1, 19q12 and 2q37.1: rs1014971, (P = 8 × 10⁻¹²) maps to a non-genic region of chromosome 22q13.1, rs8102137 (P = 2 × 10⁻¹¹) on 19q12 maps to CCNE1 and rs11892031 (P = 1 × 10⁻⁷) maps to the UGT1A cluster on 2q37.1. We confirmed four previously identified genome-wide associations on chromosomes 3q28, 4p16.3, 8q24.21 and 8q24.3, validated previous candidate associations for the GSTM1 deletion (P = 4 × 10⁻¹¹) and a tag SNP for NAT2 acetylation status (P = 4 × 10⁻¹¹), and found interactions with smoking in both regions. Our findings on common variants associated with bladder cancer risk should provide new insights into the mechanisms of carcinogenesis

    Hundreds of variants clustered in genomic loci and biological pathways affect human height

    Get PDF
    Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.

    Linking the sectoral employment structure and household poverty in the United Kingdom

    Get PDF
    Structural changes in the labour markets of developed economies, and changes in their institutional characteristics, have led to growing unease about the nature of low-paid employment. Related concerns have been expressed about the persistence of low-pay, the fragmentation of work and the growth of under-employment. While all these factors have potential implications for individuals’ earnings, less is known about the connection between labour market change, patterns of sectoral growth and decline and household poverty outcomes. This article shows distinct patterns of poverty outcomes by sector of employment, after controlling for other factors. However, household characteristics, in particular the presence of a second earner, do strongly mitigate the poverty risk. Overall, the findings demonstrate that policymakers need to develop a coherent policy towards poverty that recognises the nature of jobs growth and the distribution of ‘good jobs’ across households

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment

    A Whole-Genome SNP Association Study of NCI60 Cell Line Panel Indicates a Role of Ca2+ Signaling in Selenium Resistance

    Get PDF
    Epidemiological studies have suggested an association between selenium intake and protection from a variety of cancer. Considering this clinical importance of selenium, we aimed to identify the genes associated with resistance to selenium treatment. We have applied a previous methodology developed by our group, which is based on the genetic and pharmacological data publicly available for the NCI60 cancer cell line panel. In short, we have categorized the NCI60 cell lines as selenium resistant and sensitive based on their growth inhibition (GI50) data. Then, we have utilized the Affymetrix 125K SNP chip data available and carried out a genome-wide case-control association study for the selenium sensitive and resistant NCI60 cell lines. Our results showed statistically significant association of four SNPs in 5q33–34, 10q11.2, 10q22.3 and 14q13.1 with selenium resistance. These SNPs were located in introns of the genes encoding for a kinase-scaffolding protein (AKAP6), a membrane protein (SGCD), a channel protein (KCNMA1), and a protein kinase (PRKG1). The knock-down of KCNMA1 by siRNA showed increased sensitivity to selenium in both LNCaP and PC3 cell lines. Furthermore, SNP-SNP interaction (epistasis) analysis indicated the interactions of the SNPs in AKAP6 with SGCD as well as SNPs in AKAP6 with KCNMA1 with each other, assuming additive genetic model. These genes were also all involved in the Ca2+ signaling, which has a direct role in induction of apoptosis and induction of apoptosis in tumor cells is consistent with the chemopreventive action of selenium. Once our findings are further validated, this knowledge can be translated into clinics where individuals who can benefit from the chemopreventive characteristics of the selenium supplementation will be easily identified using a simple DNA analysis
    corecore