150 research outputs found

    Results from the Relativistic Heavy Ion Collider

    Full text link
    We describe the current status of the heavy ion research program at the Relativistic Heavy Ion Collider (RHIC). The new suite of experiments and the collider energies have opened up new probes of the medium created in the collisions. Our review focuses on the experimental discoveries to date at RHIC and their interpretation in the light of our present theoretical understanding of the dynamics of relativistic heavy ion collisions and of the structure of strongly interacting matter at high energy density.Comment: 47 pages, 10 figures, submitted to Annual Review of Nuclear and Particle Science. The authors invite and appreciate feedback about possible errors and/or inconsistencies in the manuscrip

    The canonical partition function for relativistic hadron gases

    Full text link
    Particle production in high-energy collisions is often addressed within the framework of the thermal (statistical) model. We present a method to calculate the canonical partition function for the hadron resonance gas with exact conservation of the baryon number, strangeness, electric charge, charmness and bottomness. We derive an analytical expression for the partition function which is represented as series of Bessel functions. Our results can be used directly to analyze particle production yields in elementary and in heavy ion collisions. We also quantify the importance of quantum statistics in the calculations of the light particle multiplicities in the canonical thermal model of the hadron resonance gas.Comment: 10 pages, 2 figures; submitted for publication in EPJ

    On the Thermodynamics of Hot Hadronic Matter

    Get PDF
    The equation of state of hot hadronic matter is obtained, by taking into account the contribution of the massive states with the help of the resonance spectrum τ(m)m3\tau (m)\sim m^3 justified by the authors in previous papers. This equation of state is in agreement with that provided by the low-temperature expansion for the pion intracting gas. It is shown that in this picture the deconfinement phase transition is absent, in agreement with lattice gauge calculations which show the only phase transition of chiral symmetry restoration. The latter is modelled with the help of the restriction of the number of the effective degrees of freedom in the hadron phase to that of the microscopic degrees of freedom in the quark-gluon phase, through the corresponding truncation of the hadronic resonance spectrum, and the decrease of the effective hadron masses with temperature, predicted by Brown and Rho. The results are in agreement with lattice gauge data and show a smooth crossover in the thermodynamic variables in a temperature range 50\sim 50 MeV.Comment: 21 pages, LaTeX, 3 postscript figure

    Relativistic mass distribution in event-anti-event system and ``realistic'' equation of state for hot hadronic matter

    Get PDF
    We find the equation of state p,ρT6,p,\rho \propto T^6, which gives the value of the sound velocity c2=0.20,c^2=0.20, in agreement with the ``realistic'' equation of state for hot hadronic matter suggested by Shuryak, in the framework of a covariant relativistic statistical mechanics of an event--anti-event system with small chemical and mass potentials. The relativistic mass distribution for such a system is obtained and shown to be a good candidate for fitting hadronic resonances, in agreement with the phenomenological models of Hagedorn, Shuryak, {\it et al.} This distribution provides a correction to the value of specific heat 3/2, of the order of 5.5\%, at low temperatures.Comment: 19 pages, report TAUP-2161-9

    Kinetic equation with exact charge conservation

    Get PDF
    We formulate the kinetic master equation describing the production of charged particles which are created or destroyed only in pairs due to the conservation of their Abelian charge.Our equation applies to arbitrary particle multiplicities and reproduces the equilibrium results for both canonical (rare particles) and grand canonical (abundant particles) systems. For canonical systems, the equilibrium multiplicity is much lower and the relaxation time is much shorter than the naive extrapolation from the grand canonical ensemble results. Implications for particle chemical equilibration in heavy-ion collisions are discussed.Comment: 4 Pages in RevTe

    Hadron and hadron-cluster production in a hydrodynamical model including particle evaporation

    Get PDF
    We discuss the evolution of the mixed phase at RHIC and SPS within boostinvariant hydrodynamics. In addition to the hydrodynamical expansion, we also consider evaporation of particles off the surface of the fluid. The back-reaction of the evaporation process on the dynamics of the fluid shortens the lifetime of the mixed phase. In our model this lifetime of the mixed phase is <12 fm/c in Au+Au at RHIC and <6.5 fm/c in Pb+Pb at SPS, even in the limit of vanishing transverse expansion velocity. Strangeness separation occurs, especially in events (or at rapidities) with relatively high initial net baryon and strangeness number, enhancing the multiplicity of MEMOs (multiply strange nuclear clusters). If antiquarks and antibaryons reach saturation in the course of the pure QGP or mixed phase, we find that at RHIC the ratio of antideuterons to deuterons may exceed 0.3 and even anti-helium to helium>0.1. Due to fluctuations, at RHIC even negative baryon number at midrapidity is possible in individual events, so that the antibaryon and antibaryon-cluster yields exceed those of the corresponding baryons and clusters.Comment: 17 pages, Latex, epsfig stylefil

    Recent results in relativistic heavy ion collisions: from ``a new state of matter'' to "the perfect fluid"

    Full text link
    Experimental Physics with Relativistic Heavy Ions dates from 1992 when a beam of 197Au of energy greater than 10A GeV/c first became available at the Alternating Gradient Synchrotron (AGS) at Brookhaven National Laboratory (BNL) soon followed in 1994 by a 208Pb beam of 158A GeV/c at the Super Proton Synchrotron (SPS) at CERN (European Center for Nuclear Research). Previous pioneering measurements at the Berkeley Bevalac in the late 1970's and early 1980's were at much lower bombarding energies (~ 1 A GeV/c) where nuclear breakup rather than particle production is the dominant inelastic process in A+A collisions. More recently, starting in 2000, the Relativistic Heavy Ion Collider (RHIC) at BNL has produced head-on collisions of two 100A GeV beams of fully stripped Au ions, corresponding to nucleon-nucleon center-of-mass energy, sqrt(sNN)=200 GeV, total c.m. energy 200A GeV. The objective of this research program is to produce nuclear matter with extreme density and temperature, possibly resulting in a state of matter where the quarks and gluons normally confined inside individual nucleons (r < 1 fm) are free to act over distances an order of magnitude larger. Progress from the period 1992 to the present will be reviewed, with reference to previous results from light ion and proton-proton collisions where appropriate. Emphasis will be placed on the measurements which formed the basis for the announcements by the two major laboratories: "A new state of matter", by CERN on Feb 10, 2000 and "The perfect fluid", by BNL on April 19, 2005.Comment: 62 pages, 39 figures. Review article published in Reports on Progress in Physics on June 23, 2006. In this published version, mistakes, typographical errors, and citations have been corrected and a subsection has been adde

    Signatures of Quark-Gluon-Plasma formation in high energy heavy-ion collisions: A critical review

    Full text link
    A critical review on signatures of Quark-Gluon-Plasma formation is given and the current (1998) experimental status is discussed. After giving an introduction to the properties of QCD matter in both, equilibrium- and non-equilibrium theories, we focus on observables which may yield experimental evidence for QGP formation. For each individual observable the discussion is divided into three sections: first the connection between the respective observable and QGP formation in terms of the underlying theoretical concepts is given, then the relevant experimental results are reviewed and finally the current status concerning the interpretation of both, theory and experiment, is discussed. A comprehensive summary including an outlook towards RHIC is given in the final section.Comment: Topical review, submitted to Journal of Physics G: 68 pages, including 39 figures (revised version: only minor modifications, some references added

    Experimental and Theoretical Challenges in the Search for the Quark Gluon Plasma: The STAR Collaboration's Critical Assessment of the Evidence from RHIC Collisions

    Get PDF
    We review the most important experimental results from the first three years of nucleus-nucleus collision studies at RHIC, with emphasis on results from the STAR experiment, and we assess their interpretation and comparison to theory. The theory-experiment comparison suggests that central Au+Au collisions at RHIC produce dense, rapidly thermalizing matter characterized by: (1) initial energy densities above the critical values predicted by lattice QCD for establishment of a Quark-Gluon Plasma (QGP); (2) nearly ideal fluid flow, marked by constituent interactions of very short mean free path, established most probably at a stage preceding hadron formation; and (3) opacity to jets. Many of the observations are consistent with models incorporating QGP formation in the early collision stages, and have not found ready explanation in a hadronic framework. However, the measurements themselves do not yet establish unequivocal evidence for a transition to this new form of matter. The theoretical treatment of the collision evolution, despite impressive successes, invokes a suite of distinct models, degrees of freedom and assumptions of as yet unknown quantitative consequence. We pose a set of important open questions, and suggest additional measurements, at least some of which should be addressed in order to establish a compelling basis to conclude definitively that thermalized, deconfined quark-gluon matter has been produced at RHIC.Comment: 101 pages, 37 figures; revised version to Nucl. Phys.
    corecore