397 research outputs found

    Nanoscale Distribution of Nuclear Sites by Super-Resolved Image Cross-Correlation Spectroscopy

    Get PDF
    Deciphering the spatiotemporal coordination between nuclear functions is important to understand its role in the maintenance of human genome. In this context, super-resolution microscopy has gained considerable interest because it can be used to probe the spatial organization of functional sites in intact single-cell nuclei in the 20\u2013250 nm range. Among the methods that quantify colocalization from multicolor images, image cross-correlation spectroscopy (ICCS) offers several advantages, namely it does not require a presegmentation of the image into objects and can be used to detect dynamic interactions. However, the combination of ICCS with super-resolution microscopy has not been explored yet. Here, we combine dual-color stimulated emission depletion (STED) nanoscopy with ICCS (STED-ICCS) to quantify the nanoscale distribution of functional nuclear sites. We show that super-resolved ICCS provides not only a value of the colocalized fraction but also the characteristic distances associated to correlated nuclear sites. As a validation, we quantify the nanoscale spatial distribution of three different pairs of functional nuclear sites in MCF10A cells. As expected, transcription foci and a transcriptionally repressive histone marker (H3K9me3) are not correlated. Conversely, nascent DNA replication foci and the proliferating cell nuclear antigen(PCNA) protein have a high level of proximity and are correlated at a nanometer distance scale that is close to the limit of our experimental approach. Finally, transcription foci are found at a distance of 130 nm from replication foci, indicating a spatial segregation at the nanoscale. Overall, our data demonstrate that STED-ICCS can be a powerful tool for the analysis of the nanoscale distribution of functional sites in the nucleus

    Isotope correlations as a probe for freeze-out characterization: central 124Sn+64Ni, 112Sn+58Ni collisions

    Full text link
    124Sn+64Ni and 112Sn+58Ni reactions at 35 AMeV incident energy were studied with the forward part of CHIMERA multi-detector. The most central collisions were selected by means of a multidimensional analysis. The characteristics of the source formed in the central collisions, as size, temperature and volume, were inspected. The measured isotopes of light fragments (3 <= Z <=8) were used to examine isotope yield ratios that provide information on the free neutron to proton densities.Comment: 4 pages, Contribution to 8th International Conference on Nucleus-Nucleus Collisions, Moscow 200

    Effect of the intermediate velocity emissions on the quasi-projectile properties for the Ar+Ni system at 95 A.MeV

    Full text link
    The quasi-projectile (QP) properties are investigated in the Ar+Ni collisions at 95 A.MeV taking into account the intermediate velocity emission. Indeed, in this reaction, between 52 and 95 A.MeV bombarding energies, the number of particles emitted in the intermediate velocity region is related to the overlap volume between projectile and target. Mean transverse energies of these particles are found particularly high. In this context, the mass of the QP decreases linearly with the impact parameter from peripheral to central collisions whereas its excitation energy increases up to 8 A.MeV. These results are compared to previous analyses assuming a pure binary scenario

    Study of intermediate velocity products in the Ar+Ni collisions between 52 and 95 A.MeV

    Full text link
    Intermediate velocity products in Ar+Ni collisions from 52 to 95 A.MeV are studied in an experiment performed at the GANIL facility with the 4π\pi multidetector INDRA. It is shown that these emissions cannot be explained by statistical decays of the quasi-projectile and the quasi-target in complete equilibrium. Three methods are used to isolate and characterize intermediate velocity products. The total mass of these products increases with the violence of the collision and reaches a large fraction of the system mass in mid-central collisions. This mass is found independent of the incident energy, but strongly dependent on the geometry of the collision. Finally it is shown that the kinematical characteristics of intermediate velocity products are weakly dependent on the experimental impact parameter, but strongly dependent on the incident energy. The observed trends are consistent with a participant-spectator like scenario or with neck emissions and/or break-up.Comment: 37 pages, 13 figure

    Status and perspectives of the 4 pi charged particles multidetector CHIMERA

    Get PDF
    The construction of the multidetector CHIMERA designed to detect and identify charged particles and fragments emitted in heavy ion reactions at intermediate energy is in progress and is coming to an end. The construction of this multidetector is presented in this paper as well as the status of the project

    Dynamics of "binary" 197Au+197 Au collisions as a test of energy dissipation mechanism

    Get PDF
    197Au+197Au collisions at 15 MeV/nucleon were studied using the multidetector array CHIMERA and heavy ion beams from the superconducting cyclotron of LNS Catania. The experiment was aimed at studying the mechanism of energy dissipation in collisions of very heavy systems. In the present contribution we report on a part of our study concentrated on a subject of basically binary damped collisions, in which only two main fragments are formed prior to secondary deexcitation processes. Such “binary” events were selected by using complete information from the exclusive-type data (including all Z 3 fragments) obtained with the CHIMERA multidetector. Results are compared with predictions of a classical dynamical model of Błocki et al., in which both scenarios of energy dissipation, one-body or two-body dissipation mechanisms, are assumed

    Isoscaling in neck fragmentation

    Get PDF
    Production of intermediate mass fragments (IMF) has been studied in semi-peripheral 124Sn (35AMeV) + 64Ni and 112Sn (35AMeV) + 58Ni reactions. Our recently proposed new method of an analysis of the neck- like fragmentation processes that provides information on the IMFs time equence and time scale is reviewed. Isotopic analysis of so characterized IMFs gives evidence for neutron enrichment of mid-velocity fragments. A clear isoscaling behavior is found despite the short emission time scale. Evolution of the isoscaling parameters from semi-peripheral to central collisions is discussed

    Isospin effects studied with the CHIMERA detector at 35 Mev/nucleon

    Get PDF
    The yield of light charged particles and intermediate mass fragments is studied for the neutron-rich, 124Sn+64Ni, and neutron-poor, 112Sn+58Ni, reactions at 35MeV/nucleon as a function of the impact parameter. Our main observations are: (i) The yields of 1H, 3He and 4He particles in the neutron-poor system are enhanced with respect to the neutron-rich system and the yield of 3H is suppressed at all impact parameters, (ii) The ratio of 3H to 3He yield is three times larger for neutron poor system, (iii) The N/Z ratio of the emitted intermediate-mass fragments shows dependence on the isospin of the system, (iv) The neutron richness of detected intermediate mass fragments depends strongly on their rapidity. The gross features of the experimental data are reproduced by quantum molecular dynamics model calculations
    corecore