40 research outputs found
The Eurasian Modern Pollen Database (EMPD), version 2
The Eurasian (née European) Modern Pollen Database (EMPD) was established in 2013 to provide a public database of high-quality modern pollen surface samples to help support studies of past climate, land cover, and land use using fossil pollen. The EMPD is part of, and complementary to, the European Pollen Database (EPD) which contains data on fossil pollen found in Late Quaternary sedimentary archives throughout the Eurasian region. The EPD is in turn part of the rapidly growing Neotoma database, which is now the primary home for global palaeoecological data. This paper describes version 2 of the EMPD in which the number of samples held in the database has been increased by 60 % from 4826 to 8134. Much of the improvement in data coverage has come from northern Asia, and the database has consequently been renamed the Eurasian Modern Pollen Database to reflect this geographical enlargement. The EMPD can be viewed online using a dedicated map-based viewer at https://empd2.github.io and downloaded in a variety of file formats at https://doi.pangaea.de/10.1594/PANGAEA.909130 (Chevalier et al., 2019)Swiss National Science Foundation | Ref. 200021_16959
The Eurasian Modern Pollen Database (EMPD), version 2
The Eurasian (nee European) Modern Pollen Database (EMPD) was established in 2013 to provide a public database of high-quality modern pollen surface samples to help support studies of past climate, land cover, and land use using fossil pollen. The EMPD is part of, and complementary to, the European Pollen Database (EPD) which contains data on fossil pollen found in Late Quaternary sedimentary archives throughout the Eurasian region. The EPD is in turn part of the rapidly growing Neotoma database, which is now the primary home for global palaeoecological data. This paper describes version 2 of the EMPD in which the number of samples held in the database has been increased by 60% from 4826 to 8134. Much of the improvement in data coverage has come from northern Asia, and the database has consequently been renamed the Eurasian Modern Pollen Database to reflect this geographical enlargement. The EMPD can be viewed online using a dedicated map-based viewer at https://empd2.github.io and downloaded in a variety of file formats at https://doi.pangaea.de/10.1594/PANGAEA.909130 (Chevalier et al., 2019).Peer reviewe
The Eurasian Modern Pollen Database (EMPD), version 2
Abstract. The Eurasian (née European) Modern Pollen Database (EMPD) was established in 2013 to provide a public database of high-quality modern pollen surface samples to help support studies of past climate, land cover, and land use using fossil pollen. The EMPD is part of, and complementary to, the European Pollen Database (EPD) which contains data on fossil pollen found in Late Quaternary sedimentary archives throughout the Eurasian region. The EPD is in turn part of the rapidly growing Neotoma database, which is now the primary home for global palaeoecological data. This paper describes version 2 of the EMPD in which the number of samples held in the database has been increased by 60 % from 4826 to 8134. Much of the improvement in data coverage has come from northern Asia, and the database has consequently been renamed the Eurasian Modern Pollen Database to reflect this geographical enlargement. The EMPD can be viewed online using a dedicated map-based viewer at https://empd2.github.io and downloaded in a variety of file formats at https://doi.pangaea.de/10.1594/PANGAEA.909130 (Chevalier et al., 2019).</jats:p
A new configuration of irregular reflection of shock waves
A new configuration of shock waves has been found in the reflection of shock waves in a stationary supersonic gas flow in addition to the wellknown regular and Mach reflections. This new three-shock configuration occurs with a negative angle of reflection and Mach numbers greater than 3 and an adiabatic index smaller than 1.4. It has been shown that this new configuration is unstable and leads to a radical change of the total flow pattern. The emergence of this new kind of instability can negatively affect operation of aircraft and rocket engines due to the failure of the flow to be as conventionally predicted
Recommended from our members
14C Chronology of Late Pleistocene-Holocene Events in the Nizhnee Priamurie (Southeast Russia)
The Russian Far East is characterized by widespread peat bogs with a sufficiently thick peat accumulation. A series of radiocarbon dates from the studied peat bogs (in Lower Amur) were obtained. Analysis of these dates shows that the total peat formation in this territory began in the Late Pleistocene-Holocene (11,830 +/820, TIG-157; 9975 +/120, SOAN-4025). The rates of peat accumulation and the humidity index were counted. In addition, the botanical composition and degree of peat decomposition were defined. These data allow to study in more detail climate fluctuation and the 14C chronology of Holocene events in the region studied.The Radiocarbon archives are made available by Radiocarbon and the University of Arizona Libraries. Contact [email protected] for further information.Migrated from OJS platform February 202