16 research outputs found
The PMIP4 contribution to CMIP6 – Part 1: overview and over-arching analysis plan
This paper is the first of a series of four GMD papers on the PMIP4-CMIP6 experiments. Part 2 (Otto-Bliesner et al., 2017) gives details about the two PMIP4-CMIP6 interglacial experiments, Part 3 (Jungclaus et al., 2017) about the last millennium experiment, and Part 4 (Kageyama et al., 2017) about the Last Glacial Maximum experiment. The mid-Pliocene Warm Period experiment is part of the Pliocene Model Intercomparison Project (PlioMIP) – Phase 2, detailed in Haywood et al. (2016).
The goal of the Paleoclimate Modelling Intercomparison Project (PMIP) is to understand the response of the climate system to different climate forcings for documented climatic states very different from the present and historical climates. Through comparison with observations of the environmental impact of these climate changes, or with climate reconstructions based on physical, chemical, or biological records, PMIP also addresses the issue of how well state-of-the-art numerical models simulate climate change. Climate models are usually developed using the present and historical climates as references, but climate projections show that future climates will lie well outside these conditions. Palaeoclimates very different from these reference states therefore provide stringent tests for state-of-the-art models and a way to assess whether their sensitivity to forcings is compatible with palaeoclimatic evidence. Simulations of five different periods have been designed to address the objectives of the sixth phase of the Coupled Model Intercomparison Project (CMIP6): the millennium prior to the industrial epoch (CMIP6 name: past1000); the mid-Holocene, 6000 years ago (midHolocene); the Last Glacial Maximum, 21 000 years ago (lgm); the Last Interglacial, 127 000 years ago (lig127k); and the mid-Pliocene Warm Period, 3.2 million years ago (midPliocene-eoi400). These climatic periods are well documented by palaeoclimatic and palaeoenvironmental records, with climate and environmental changes relevant for the study and projection of future climate changes. This paper describes the motivation for the choice of these periods and the design of the numerical experiments and database requests, with a focus on their novel features compared to the experiments performed in previous phases of PMIP and CMIP. It also outlines the analysis plan that takes advantage of the comparisons of the results across periods and across CMIP6 in collaboration with other MIPs
Recommended from our members
PMIP4-CMIP6: the contribution of the Paleoclimate Modelling Intercomparison Project to CMIP6
The goal of the Palaeoclimate Modelling Intercomparison Project (PMIP) is to understand the response of the climate system to changes in different climate forcings and to feedbacks. Through comparison with observations of the environmental impacts of these climate changes, or with climate reconstructions based on physical,
chemical or biological records, PMIP also addresses the issue of how well state-of-the-art models simulate climate changes. Palaeoclimate states are radically different from those of the recent past documented by the instrumental record and thus provide an out-of-sample test of the models used for future climate projections and
a way to assess whether they have the correct sensitivity to forcings and feedbacks. Five distinctly different periods have been selected as focus for the core palaeoclimate experiments that are designed to contribute to the objectives of the sixth phase of the Coupled Model Intercomparison Project (CMIP6). This manuscript describes
the motivation for the choice of these periods and the design of the numerical experiments, with a focus upon their novel features compared to the experiments performed in previous phases of PMIP and CMIP as well as the benefits of common analyses of the models across multiple climate states. It also describes the information
needed to document each experiment and the model outputs required for analysis and benchmarking
Impact of flu on hospital admissions during 4 flu seasons in Spain, 2000–2004
<p>Abstract</p> <p>Background</p> <p>Seasonal flu epidemics in the European region cause high numbers of cases and deaths. Flu-associated mortality has been estimated but morbidity studies are necessary to understand the burden of disease in the population. Our objective was to estimate the excess hospital admissions in Spain of diseases associated with influenza during four epidemic influenza periods (2000 – 2004).</p> <p>Methods</p> <p>Hospital discharge registers containing pneumonia, chronic bronchitis, heart failure and flu from all public hospitals in Spain were reviewed for the years 2000 to 2004. Epidemic periods were defined by data from the Sentinel Surveillance System. Excess hospitalisations were calculated as the difference between the average number of weekly hospitalisations/100,000 in epidemic and non-epidemic periods. Flu epidemics were defined for seasons 2001/2002, 2002/2003, 2003/2004.</p> <p>Results</p> <p>A(H3N2) was the dominant circulating serotype in 2001/2002 and 2003/2004. Negligible excess hospitalisations were observed during the 2002/2003 epidemic where A(H1N1) was circulating. During 2000/2001, flu activity remained below threshold levels and therefore no epidemic period was defined. In two epidemic periods studied a delay between the peak of the influenza epidemic and the peak of hospitalisations was observed. During flu epidemics with A(H3N2), excess hospitalisations were higher in men and in persons <5 and >64 years higher than 10 per 100,000. Pneumonia accounted for 70% of all flu associated hospitalisations followed by chronic bronchitis. No excess flu-specific hospitalisations were recorded during all seasons.</p> <p>Conclusion</p> <p>Flu epidemics have an impact on hospital morbidity in Spain. Further studies that include other variables, such as temperature and humidity, are necessary and will deepen our understanding of the role of each factor during flu epidemics and their relation with morbidity.</p
Discordant identification of pediatric severe sepsis by research and clinical definitions in the SPROUT international point prevalence study
Introduction: Consensus criteria for pediatric severe sepsis have standardized enrollment for research studies. However, the extent to which critically ill children identified by consensus criteria reflect physician diagnosis of severe sepsis, which underlies external validity for pediatric sepsis research, is not known. We sought to determine the agreement between physician diagnosis and consensus criteria to identify pediatric patients with severe sepsis across a network of international pediatric intensive care units (PICUs). Methods: We conducted a point prevalence study involving 128 PICUs in 26 countries across 6 continents. Over the course of 5 study days, 6925 PICU patients <18 years of age were screened, and 706 with severe sepsis defined either by physician diagnosis or on the basis of 2005 International Pediatric Sepsis Consensus Conference consensus criteria were enrolled. The primary endpoint was agreement of pediatric severe sepsis between physician diagnosis and consensus criteria as measured using Cohen's ?. Secondary endpoints included characteristics and clinical outcomes for patients identified using physician diagnosis versus consensus criteria. Results: Of the 706 patients, 301 (42.6 %) met both definitions. The inter-rater agreement (? ± SE) between physician diagnosis and consensus criteria was 0.57 ± 0.02. Of the 438 patients with a physician's diagnosis of severe sepsis, only 69 % (301 of 438) would have been eligible to participate in a clinical trial of pediatric severe sepsis that enrolled patients based on consensus criteria. Patients with physician-diagnosed severe sepsis who did not meet consensus criteria were younger and had lower severity of illness and lower PICU mortality than those meeting consensus criteria or both definitions. After controlling for age, severity of illness, number of comorbid conditions, and treatment in developed versus resource-limited regions, patients identified with severe sepsis by physician diagnosis alone or by consensus criteria alone did not have PICU mortality significantly different from that of patients identified by both physician diagnosis and consensus criteria. Conclusions: Physician diagnosis of pediatric severe sepsis achieved only moderate agreement with consensus criteria, with physicians diagnosing severe sepsis more broadly. Consequently, the results of a research study based on consensus criteria may have limited generalizability to nearly one-third of PICU patients diagnosed with severe sepsis
Reconstructed and simulated medieval climate anomaly in southern South America
An austral summer temperature reconstruction for southern South America for the last millennium is compared to paleoclimate simulations provided by two Atmosphere-Ocean General Circulation Models with special emphasis on the Medieval Climate Anomaly.Peer reviewe
The PMIP4 Contribution to CMIP6 - Part 1: Overview and Over-Arching Analysis Plan
This paper is the first of a series of four GMD (Geoscientific Model Development) papers on the PMIP4-CMIP6 (Paleoclimate Modelling Intercomparison Project - Phase 4 -- Coupled Model Intercomparison Project - Phase 6) experiments. Part 2 (Otto-Bliesner et al., 2017) gives details about the two PMIP4-CMIP6 interglacial experiments, Part 3 (Jungclaus et al., 2017) about the last millennium experiment, and Part 4 (Kageyama et al., 2017) about the Last Glacial Maximum experiment. The mid-Pliocene Warm Period experiment is part of the Pliocene Model Intercomparison Project (PlioMIP) - Phase 2, detailed in Haywood et al. (2016). The goal of the Paleoclimate Modelling Intercomparison Project (PMIP) is to understand the response of the climate system to different climate forcings for documented climatic states very different from the present and historical climates. Through comparison with observations of the environmental impact of these climate changes, or with climate reconstructions based on physical, chemical, or biological records, PMIP also addresses the issue of how well state-of-the-art numerical models simulate climate change. Climate models are usually developed using the present and historical climates as references, but climate projections show that future climates will lie well outside these conditions. Palaeoclimates very different from these reference states therefore provide stringent tests for state-of-the-art models and a way to assess whether their sensitivity to forcings is compatible with palaeoclimatic evidence. Simulations of five different periods have been designed to address the objectives of the sixth phase of the Coupled Model Intercomparison Project (CMIP6): the millennium prior to the industrial epoch (CMIP6 name: past1000); the mid-Holocene, 6000 years ago (midHolocene); the Last Glacial Maximum, 21,000 years ago (lgm); the Last Interglacial, 127,000 years ago (lig127k); and the mid-Pliocene Warm Period, 3.2 million years ago (midPliocene-eoi400). These climatic periods are well documented by palaeoclimatic and palaeoenvironmental records, with climate and environmental changes relevant for the study and projection of future climate changes. This paper describes the motivation for the choice of these periods and the design of the numerical experiments and database requests, with a focus on their novel features compared to the experiments performed in previous phases of PMIP and CMIP. It also outlines the analysis plan that takes advantage of the comparisons of the results across periods and across CMIP6 in collaboration with other MIPs
Le famiglie monoparentali
Il contributo intende offrire uno sguardo alle nuove modalit\ue0 di essere "famiglia", con particolare attenzione al fenomeno delle "famiglie" formate da un solo genitore e dai figli conviventi e alle questioni che originano da queste nuove realt\ue0 familiari
New or Progressive Multiple Organ Dysfunction Syndrome in Pediatric Severe Sepsis: A Sepsis Phenotype With Higher Morbidity and Mortality
Objectives: To describe the epidemiology, morbidity, and mortality of new or progressive multiple organ dysfunction syndrome in children with severe sepsis. Design: Secondary analysis of a prospective, cross-sectional, point prevalence study. Setting: International, multicenter PICUs. Patients: Pediatric patients with severe sepsis identified on five separate days over a 1-year period. Interventions: None. Measurements and Main Results: Of 567 patients from 128 PICUs in 26 countries enrolled, 384 (68%) developed multiple organ dysfunction syndrome within 7 days of severe sepsis recognition. Three hundred twenty-seven had multiple organ dysfunction syndrome on the day of sepsis recognition. Ninety-one of these patients developed progressive multiple organ dysfunction syndrome, whereas an additional 57 patients subsequently developed new multiple organ dysfunction syndrome, yielding a total proportion with severe sepsis-associated new or progressive multiple organ dysfunction syndrome of 26%. Hospital mortality in patients with progressive multiple organ dysfunction syndrome was 51% compared with patients with new multiple organ dysfunction syndrome (28%) and those with single-organ dysfunction without multiple organ dysfunction syndrome (10%) (p < 0.001). Survivors of new or progressive multiple organ dysfunction syndrome also had a higher frequency of moderate to severe disability defined as a Pediatric Overall Performance Category score of greater than or equal to 3 and an increase of greater than or equal to 1 from baseline: 22% versus 29% versus 11% for progressive, new, and no multiple organ dysfunction syndrome, respectively (p < 0.001). Conclusions: Development of new or progressive multiple organ dysfunction syndrome is common (26%) in severe sepsis and is associated with a higher risk of morbidity and mortality than severe sepsis without new or progressive multiple organ dysfunction syndrome. Our data support the use of new or progressive multiple organ dysfunction syndrome as an important outcome in trials of pediatric severe sepsis although efforts are needed to validate whether reducing new or progressive multiple organ dysfunction syndrome leads to improvements in more definitive morbidity and mortality endpoints
Comparison of Pediatric Severe Sepsis Managed in U.S. and European ICUs
Copyright © 2016 by the Society of Critical Care Medicine and the World Federation of Pediatric Intensive and Critical Care Societies.Objectives: Pediatric severe sepsis remains a significant global health problem without new therapies despite many multicenter clinical trials. We compared children managed with severe sepsis in European and U.S. PICUs to identify geographic variation, which may improve the design of future international studies. Design: We conducted a secondary analysis of the Sepsis PRevalence, OUtcomes, and Therapies study. Data about PICU characteristics, patient demographics, therapies, and outcomes were compared. Multivariable regression models were used to determine adjusted differences in morbidity and mortality. Setting: European and U.S. PICUs. Patients: Children with severe sepsis managed in European and U.S. PICUs enrolled in the Sepsis PRevalence, OUtcomes, and Therapies study. Interventions: None. Measurements and Main Results: European PICUs had fewer beds (median, 11 vs 24; p < 0.001). European patients were younger (median, 1 vs 6 yr; p < 0.001), had higher severity of illness (median Pediatric Index of Mortality-3, 5.0 vs 3.8; p = 0.02), and were more often admitted from the ward (37% vs 24%). Invasive mechanical ventilation, central venous access, and vasoactive infusions were used more frequently in European patients (85% vs 68%, p = 0.002; 91% vs 82%, p = 0.05; and 71% vs 50%; p < 0.001, respectively). Raw morbidity and mortality outcomes were worse for European compared with U.S. patients, but after adjusting for patient characteristics, there were no significant differences in mortality, multiple organ dysfunction, disability at discharge, length of stay, or ventilator/vasoactive-free days. Conclusions: Children with severe sepsis admitted to European PICUs have higher severity of illness, are more likely to be admitted from hospital wards, and receive more intensive care therapies than in the United States. The lack of significant differences in morbidity and mortality after adjusting for patient characteristics suggests that the approach to care between regions, perhaps related to PICU bed availability, needs to be considered in the design of future international clinical trials in pediatric severe sepsis
Site variability in regulatory oversight for an international study of pediatric sepsis
Objectives: Duplicative institutional review board/research ethics committee review for multicenter studies may impose administrative burdens and inefficiencies affecting study implementation and quality. Understanding variability in site-specific institutional review board/research ethics committee assessment and barriers to using a single review committee (an increasingly proposed solution) can inform a more efficient process. We provide needed data about the regulatory oversight process for the Sepsis PRevalence, OUtcomes, and Therapies multicenter point prevalence study. Design: Survey. Setting: Sites invited to participate in Sepsis PRevalence, OUtcomes, and Therapies. Subjects: Investigators at sites that expressed interest and/or participated in Sepsis PRevalence, OUtcomes, and Therapies. Interventions: None. Measurements and Main Results: Using an electronic survey, we collected data about 1) logistics of protocol submission, 2) institutional review board/research ethics committee requested modifications, and 3) use of a single institutional review board (for U.S. sites). We collected surveys from 104 of 167 sites (62%). Of the 97 sites that submitted the protocol for institutional review board/research ethics committee review, 34% conducted full board review, 54% expedited review, and 4% considered the study exempt. Time to institutional review board/research ethics committee approval required a median of 34 (range 3-186) days, which took longer at sites that required protocol modifications (median [interquartile range] 50 d [35-131 d] vs 32 d [14-54 d)]; p = 0.02). Enrollment was delayed at eight sites due to prolonged (> 50 d) time to approval. Of 49 U.S. sites, 43% considered using a single institutional review board, but only 18% utilized this option. Time to final approval for U.S. sites using the single institutional review board was 62 days (interquartile range, 34-70 d) compared with 34 days (interquartile range, 15-54 d) for nonsingle institutional review board sites (p = 0.16). Conclusions: Variability in regulatory oversight was evident for this minimal-risk observational research study, most notably in the category of type of review conducted. Duplicative review prolonged time to protocol approval at some sites. Use of a single institutional review board for U.S. sites was rare and did not improve efficiency of protocol approval. Suggestions for minimizing these challenges are provided