9 research outputs found

    <i>In situ</i> measurements of micronutrient dynamics in open seawater show that complex dissociation rates may limit diatom growth

    Get PDF
    In this first in situ study of the dynamic availability of phytoplankton micronutrients, a SeaExplorer glider was combined with Diffusive Gradients in Thin Films and deployed in the Mediterranean Sea. On the basis of their labile metal complex pools, we discovered that Fe and Co can be potentially limiting and Cu co-limiting to diatom growth, contrary to the generally accepted view that phosphorus (phosphate) is the growth limiting element in the Mediterranean Sea. For flagellates and picoplankton, phosphorus remains the main element limiting growth. Our in situ measurements showed that organic complexes of Fe and Cu (>98% of total dissolved concentration), dissociate slower than inorganic complexes of Co, Cd and Ni (>99% of total dissolved concentration being free ions and inorganic complexes). This strengthens the potential growth limiting effect of Fe and Cu versus phosphate, which is present as a free ion and, thus, directly available for plankton

    High-resolution observations in the western Mediterranean Sea: the REP14-MED experiment

    Get PDF
    The observational part of the REP14-MED experiment was conducted in June 2014 in the Sardo-Balearic Basin west of Sardinia (western Mediterranean Sea). Two research vessels collected high-resolution oceanographic data by means of hydrographic casts, towed systems, and underway measurements. In addition, a vast amount of data was provided by a fleet of 11 ocean gliders, time series were available from moored instruments, and information on Lagrangian flow patterns was obtained from surface drifters and one profiling float. The spatial resolution of the observations encompasses a spectrum over 4 orders of magnitude from (10<sup>1</sup> m) to (10<sup>5</sup> m), and the time series from the moored instruments cover a spectral range of 5 orders from (10<sup>1</sup> s) to (10<sup>6</sup> s). The objective of this article is to provide an overview of the huge data set which has been utilised by various studies, focusing on (i) water masses and circulation, (ii) operational forecasting, (iii) data assimilation, (iv) variability of the ocean, and (v) new payloads for gliders

    Evidence of an intermittent deep equatorward flow in the Peru upwelling system

    No full text
    International audienceIn April-May 2010, 6 consecutive repeated cross-shore sections of ~100 km were occupied by a Slocum glider off the coast of Pisco (14°S) in the southernmost Peruvian upwelling region. The collected temperature and salinity data, acquired from the surface to 1000m depth and the depth-integrated velocity, estimated from the glider drift between two dives, are used to estimate absolute geostrophic alongshore velocities and study the spatio-temporal variability of the near-coastal circulation during a 5-week time period. Besides providing interesting information on the surface frontal jet and surfacing poleward undercurrent trapped on the continental shelf and slope, the glider data reveal the presence of a subsurface deep equatorward current. The dynamics and origin of this current, which can transport up to ˜2 Sv northward, are investigated using simulations from an eddy-resolving regional model (ROMS). This relatively strong equatorward subsurface current is associated with a poleward propagating coastal trapped wave of equatorial origin, with a strongly sheared vertical structure. A simple linear coastal wave model which successfully reproduces part of the observed vertical structure of the current, indicates that it corresponds to a third baroclinic mode of coastal wave

    In situ measurements of micronutrient dynamics in open seawater show that complex dissociation rates may limit diatom growth

    Get PDF
    In this first in situ study of the dynamic availability of phytoplankton micronutrients, a SeaExplorer glider was combined with Diffusive Gradients in Thin Films and deployed in the Mediterranean Sea. On the basis of their labile metal complex pools, we discovered that Fe and Co can be potentially limiting and Cu co-limiting to diatom growth, contrary to the generally accepted view that phosphorus (phosphate) is the growth limiting element in the Mediterranean Sea. For flagellates and picoplankton, phosphorus remains the main element limiting growth. Our in situ measurements showed that organic complexes of Fe and Cu (>98% of total dissolved concentration), dissociate slower than inorganic complexes of Co, Cd and Ni (>99% of total dissolved concentration being free ions and inorganic complexes). This strengthens the potential growth limiting effect of Fe and Cu versus phosphate, which is present as a free ion and, thus, directly available for plankton. © 2018, The Author(s)

    Moose: An integrated multi-site system of NW Mediterranean marine and atmospheric observatories

    No full text
    Despite intensive research efforts undertaken in the Mediterranean Sea over more than a century, an integrated view of its evolution, viewed in the climate change and anthropogenic pressure, still lacks. In this context, a Mediterranean Ocean Observing System on Environment (MOOSE) has been set up as an interactive, distributed and integrated observatory system of the NW Mediterranean Sea to detect and identify long-term environmental anomalies. It will be based on a multisite system of continental shelf and deep-sea fixed stations as well as Lagrangian platform network to observe the spatio-temporal variability of processes interacting between the coastal-open ocean and the ocean-atmosphere components. Another target is to build efficient indicators of the health of the NW Mediterranean basin. MOOSE will also provide a large flux of realtime data to facilitate validation of operational oceanographic models. It will supply and maintain long-term time series, the only data sets that allow to evidence climatic trends. Finally, MOOSE project is supported by the Inter-Organization Environment Committee (CIO-E) and INSU to stimulate the national scientific community and European partners for a significant multidisciplinary program

    High-resolution observations in the western Mediterranean Sea: The REP14-MED experiment

    No full text
    The observational part of the REP14-MED experiment was conducted in June 2014 in the Sardo-Balearic Basin west of Sardinia (western Mediterranean Sea). Two research vessels collected high-resolution oceanographic data by means of hydrographic casts, towed systems, and underway measurements. In addition, a vast amount of data was provided by a fleet of 11 ocean gliders, time series were available from moored instruments, and information on Lagrangian flow patterns was obtained from surface drifters and one profiling float. The spatial resolution of the observations encompasses a spectrum over 4 orders of magnitude from o(101 m) to o(105 m), and the time series from the moored instruments cover a spectral range of 5 orders from o(101 s) to o(106 s). The objective of this article is to provide an overview of the huge data set which has been utilised by various studies, focusing on (i) water masses and circulation, (ii) operational forecasting, (iii) data assimilation, (iv) variability of the ocean, and (v) new payloads for gliders

    TRIDENT – Technology based impact assessment tool foR sustaInable, transparent Deep sEa miNing exploraTion and exploitation: A project overview

    No full text
    By creating a dependable, transparent, and cost-effective system for forecasting and ongoing environmental impact monitoring of exploration and exploitation activities in the deep sea, TRIDENT seeks to contribute to the sustainable exploitation of seabed mineral resources. In order to operate autonomously in remote locations under harsh conditions and send real-time data to authorities in charge of granting licenses and providing oversight, this system will create and integrate new technology and innovative solutions. The efficient monitoring and inspection system that will be created will abide by national and international legal frameworks. At the sea surface, mid-water, and the bottom, TRIDENT will identify all pertinent physical, chemical, geological, and biological characteristics that must be monitored. It will also look for data gaps and suggest procedures for addressing them. These are crucial actions to take in order to produce accurate indicators of excellent environmental status, statistically robust environmental baselines, and thresholds for significant impact, allowing for the standardization of methods and tools. In order to monitor environmental parameters on mining and reference areas at representative spatial and temporal scales, the project consortium will thereafter develop and test an integrated system of stationary and mobile observatory platforms outfitted with the most recent automatic sensors and samplers. The system will incorporate high-capacity data processing pipelines able to gather, transmit, process, and display monitoring data in close to real-time to facilitate prompt actions for preventing major harm to the environment. Last but not least, it will offer systemic and technological solutions for predicting probable impacts of applying the developed monitoring and mitigation techniques.TRIDENT project has received funding from the European Union’s HE programme under grant agreement No 101091959info:eu-repo/semantics/publishedVersio

    TRIDENT – Technology based impact assessment tool foR sustaInable, transparent Deep sEa miNing exploraTion and exploitation: A project overview

    No full text
    By creating a dependable, transparent, and costeffective system for forecasting and ongoing environmental impact monitoring of exploration and exploitation activities in the deep sea, TRIDENT seeks to contribute to the sustainable exploitation of seabed mineral resources. In order to operate autonomously in remote locations under harsh conditions and send real-time data to authorities in charge of granting licenses and providing oversight, this system will create and integrate new technology and innovative solutions. The efficient monitoring and inspection system that will be created will abide by national and international legal frameworks. At the sea surface, mid-water, and the bottom, TRIDENT will identify all pertinent physical, chemical, geological, and biological characteristics that must be monitored. It will also look for data gaps and suggest procedures for addressing them. These are crucial actions to take in order to produce accurate indicators of excellent environmental status, statistically robust environmental baselines, and thresholds for significant impact, allowing for the standardization of methods and tools. In order to monitor environmental parameters on mining and reference areas at representative spatial and temporal scales, the project consortium will thereafter develop and test an integrated system of stationary and mobile observatory platforms outfitted with the most recent automatic sensors and samplers. The system will incorporate high-capacity data processing pipelines able to gather, transmit, process, and display monitoring data in close to real-time to facilitate prompt actions for preventing major harm to the environment. Last but not least, it will offer systemic and technological solutions for predicting probable impacts of applying the developed monitoring and mitigation techniques.</p
    corecore