119 research outputs found

    Application of the method of discrete ordinates to the solution of the transport equation in the case of an inhomogeneous planetary atmosphere

    Get PDF
    A version of the method of discrete ordinate (MDO) which can be used for an optically thick inhomogeneous atmosphere was developed. The MDO may be implemented as an algorithm simpler than those proposed earlier. The algorithm is the same for each azimuth dependent component of intensity. The MDO can determine the scattered radiation field over its entire length along the vertical. It is shown the MDO, when used for homogeneous atmospheres is in agreement with the results obtained by other methods

    Preliminary results of study of infrared spectra of Venus from the orbital spacecraft Venera-9 and Venera-10

    Get PDF
    The infrared spectrum of Venus in the spectral range 1.6 to 2.8 was measured by means of the spectrometers aboard 'Venera-9' and 'Venera-10' orbital spacecrafts. Approximately 20 series of measurements were made near the pericenter of the orbit, each of which contains 150 spectra for each path intersecting the planet from the terminator to the limb. Phase angles lie within the limits from 60 to 120 deg

    Dynamics investigation in the Venus upper atmosphere

    Get PDF
    The O_2 nightglow emissions in the infrared spectral range are important features to investigate dynamics at the mesospheric altitudes, in the planetary atmosphere. In this work, we analyzed the profiles obtained at limb by the VIRTIS spectrometer on board the Venus Express mission, acquired during the mission period from 2006-07-05 to 2008-08-15 to investigate possible gravity waves characteristics at the airglow altitudes. Indeed, several profiles present double peaked structures that can be interpreted as due to gravity waves. In analogy to the Earth's and Mars cases, we use a well-known theory to model the O_2 nightglow emissions affected by gravity waves propagation, in order to support this thesis and derive the waves properties. We discuss results from 30 profiles showing double peaked structures, focusing on vertical wavelength and wave amplitude of the possible gravity waves. On average, the double peaked profiles are compatible with the effects of gravity waves with a vertical wavelength ranging between 7 and 16 km, and wave amplitude of 3-14%. A comparison with gravity waves properties in the Mars and Earth's atmospheres, using the same theory, is also proposed \citep{altieri_2014}. \ The research is supported by ASI (contract ASI-INAF I/050/10/0)

    Zonal winds at high latitudes on Venus: An improved application of cyclostrophic balance to Venus Express observations

    Get PDF
    Recent retrievals of zonal thermal winds obtained in a cyclostrophic regime on Venus are generally consistent with cloud tracking measurements at mid-latitudes, but become unphysical in polar regions where the values obtained above the clouds are often less than or close to zero. Using a global atmospheric model, we show that the main source of errors that appear in the polar regions when retrieving the zonal thermal winds is most likely due to uncertainties in the zonal wind intensity in the choice of the lower boundary condition. Here we suggest a new and robust method to better estimate the lower boundary condition for high latitudes, thereby improving the retrieved zonal thermal winds throughout the high latitudes middle atmosphere. This new method is applied to temperature fields derived from Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) data on board the Venus Express spacecraft. We obtain a zonal thermal wind field that is in better agreement with other, more direct methods based on either retrieving the zonal winds from cloud tracking or from direct measurements of the meridional slope of pressure surfaces

    Circulation of Venusian Atmosphere at 90-110 km Based on Apparent Motions of the O2 1.27 μm Nightglow From VIRTIS-M (Venus Express) Data

    Get PDF
    The paper is devoted to the investigation of Venus mesosphere circulation at 90-110 km altitudes, where tracking of the O2(a1∆g) 1.27 μm nightglow is practically the only method of studying the circulation. The images of the nightglow were obtained by VIRTIS-M on Venus Express over the course of more than 2 years. The resulting global mean velocity vector field covers the nightside between latitudes 75°S-20°N and local time 19-5 h. The main observed mode of circulation is two opposite flows from terminators to midnight; however, the wind speed in the eastward direction from the morning side exceeds the westward (evening) by 20-30 m/s, and the streams "meet" at 22.5 ± 0.5 h. The influence of underlying topography was suggested in some cases: Above mountain regions, flows behave as if they encounter an "obstacle" and "wrap around" highlands. Instances of circular motion were discovered, encompassing areas of 1,500-4,000 km

    The Atmospheric Chemistry Suite (ACS) of Three Spectrometers for the ExoMars 2016 Trace Gas Orbiter

    Get PDF
    The Atmospheric Chemistry Suite (ACS) package is an element of the Russian contribution to the ESA-Roscosmos ExoMars 2016 Trace Gas Orbiter (TGO) mission. ACS consists of three separate infrared spectrometers, sharing common mechanical, electrical, and thermal interfaces. This ensemble of spectrometers has been designed and developed in response to the Trace Gas Orbiter mission objectives that specifically address the requirement of high sensitivity instruments to enable the unambiguous detection of trace gases of potential geophysical or biological interest. For this reason, ACS embarks a set of instruments achieving simultaneously very high accuracy (ppt level), very high resolving power (>10,000) and large spectral coverage (0.7 to 17 μm—the visible to thermal infrared range). The near-infrared (NIR) channel is a versatile spectrometer covering the 0.7–1.6 μm spectral range with a resolving power of ∼20,000. NIR employs the combination of an echelle grating with an AOTF (Acousto-Optical Tunable Filter) as diffraction order selector. This channel will be mainly operated in solar occultation and nadir, and can also perform limb observations. The scientific goals of NIR are the measurements of water vapor, aerosols, and dayside or night side airglows. The mid-infrared (MIR) channel is a cross-dispersion echelle instrument dedicated to solar occultation measurements in the 2.2–4.4 μm range. MIR achieves a resolving power of >50,000. It has been designed to accomplish the most sensitive measurements ever of the trace gases present in the Martian atmosphere. The thermal-infrared channel (TIRVIM) is a 2-inch double pendulum Fourier-transform spectrometer encompassing the spectral range of 1.7–17 μm with apodized resolution varying from 0.2 to 1.3 cm−1. TIRVIM is primarily dedicated to profiling temperature from the surface up to ∼60 km and to monitor aerosol abundance in nadir. TIRVIM also has a limb and solar occultation capability. The technical concept of the instrument, its accommodation on the spacecraft, the optical designs as well as some of the calibrations, and the expected performances for its three channels are described

    Introducing the “analogs for Venus’ geologically recent surfaces” initiative: an opportunity for identifying and analyzing recently active volcano-tectonic areas of Venus trough a comparative study with terrestrial analogs

    Get PDF
    Several missions to Venus have been recently selected for launch [1–6], opening a new era for the exploration of the planet. One of the key questions that the future missions need to address is whether Venus is presently volcanically active [7–15]. Studying areas of active volcanism and tectonism on Venus is crucial to reveal clues about the geologic past of the planet, as well as provide information about the volatile content of its interior and the formation of its dense atmosphere. The “Analogsfor VENus’ GEologically Recent Surfaces” (AVENGERS) initiative aims to build a comprehensive database of terrestrial analog sites for the comparative study of recent and possibly on- going volcanic activity on Venus. Besides its scientific relevance, the AVENG- ERS initiative also acts as a bridge for international scientific collaboration, including the leadership and/or team members from the currently selected missions to Venus

    Sunlight refraction in the mesosphere of Venus during the transit on June 8th, 2004

    Full text link
    Many observers in the past gave detailed descriptions of the telescopic aspect of Venus during its extremely rare transits across the Solar disk. In particular, at the ingress and egress, the portion of the planet's disk outside the Solar photosphere has been repeatedly perceived as outlined by a thin, bright arc ("aureole"). Those historical visual observations allowed inferring the existence of Venus' atmosphere, the bright arc being correctly ascribed to the refraction of light by the outer layers of a dense atmosphere. On June 8th, 2004, fast photometry based on electronic imaging devices allowed the first quantitative analysis of the phenomenon. Several observers used a variety of acquisition systems to image the event -- ranging from amateur-sized to professional telescopes and cameras -- thus collecting for the first time a large amount of quantitative information on this atmospheric phenomenon. In this paper, after reviewing some elements brought by the historical records, we give a detailed report of the ground based observations of the 2004 transit. Besides confirming the historical descriptions, we perform the first photometric analysis of the aureole using various acquisition systems. The spatially resolved data provide measurements of the aureole flux as a function of the planetocentric latitude along the limb. A new differential refraction model of solar disk through the upper atmosphere allows us to relate the variable photometry to the latitudinal dependency of scale-height with temperature in the South polar region, as well as the latitudinal variation of the cloud-top layer altitude. We compare our measurements to recent analysis of the Venus Express VIRTIS-M, VMC and SPICAV/SOIR thermal field and aerosol distribution. Our results can be used a starting point for new, more optimized experiments during the 2012 transit event.Comment: Icarus, in pres
    corecore