43 research outputs found

    Time-of-flight methodologies with large-area diamond detectors for ion characterization in laser-driven experiments

    Get PDF
    The time-of-flight technique coupled with semiconductor detectors is a powerful instrument to provide real-time characterization of ions accelerated because of laser-matter interactions. Nevertheless, the presence of strong electromagnetic pulses (EMPs) generated during the interactions can severely hinder its employment. For this reason, the diagnostic system must be designed to have high EMP shielding. Here we present a new advanced prototype of detector, developed at ENEA-Centro Ricerche Frascati (Italy), with a large-area (15 mm × 15 mm) polycrystalline diamond sensor having 150 μm thickness. The tailored detector design and testing ensure high sensitivity and, thanks to the fast temporal response, high-energy resolution of the reconstructed ion spectrum. The detector was offline calibrated and then successfully tested during an experimental campaign carried out at the PHELIX laser facility (100 J, fs, W/cm2) at GSI (Germany). The high rejection to EMP fields was demonstrated and suitable calibrated spectra of the accelerated protons were obtained

    A standard protocol for documenting modern and fossil ichnological data

    Get PDF
    The collection and dissemination of vertebrate ichnological data is struggling to keep up with techniques that are becoming common place in the wider palaeontological field. A standard protocol is required in order to ensure that data is recorded, presented, and archived in a manner that will be useful both to contemporary researchers, and to future generations. Primarily, our aim is to make the 3D capture of ichnological data standard practice, and to provide guidance on how such 3D data can be communicated effectively (both via the literature and other means), and archived openly and in perpetuity. We recommend capture of 3D data, and the presentation of said data in the form of photographs, false-colour images, and interpretive drawings. Raw data (3D models of traces) should always be provided in a form usable by other researchers, i.e. in an open format. If adopted by the field as a whole, the result will be a more robust and uniform literature, supplemented by unparalleled availability of datasets for future workers

    Palaeoenvironments during a terminal Oligocene or early Miocene transgression in a fluvial system at the southwestern tip of Africa

    Full text link

    Data for: Magnetostratigraphy over the Triassic-Jurassic boundary in the main Karoo Basin

    No full text
    supplementary materials: equal area and orthogonal plots of sample demagnetization behavior from key sites. All samples are shown in in-situ geographic coordinates. Abbreviations for sample number as per text

    Dinosaur behaviour in an Early Jurassic palaeoecosystem – uppermost Elliot Formation, Ha Nohana, Lesotho

    No full text
    The Ha Nohana palaeosurface in southern Lesotho preserves tridactyl and tetradactyl tracks and trackways attributable to Early Jurassic bipedal, theropod-like dinosaurs. Complementary sedimentological and ichnological observations along the palaeosurface and in the strata below and above it allow detailed interpretations of climatically driven changes in this southern Gondwana palaeoecosystem. Sedimentological evidence suggests trackmaking under a semi-arid climate with heavy storms and episodic flash flooding that induced ephemeral, unconfined sheetwashes. The palaeosurface is overlain by rhythmically bedded, organic-matter rich mudstones that formed in a deep, stratified lake indicative of a longer and wetter period in the history of the site. The unique morphological details of the Ha Nohana tracks help refine the properties of the substrate during track making, the ichnotaxonomic affinities of the footprints and the interpretation of the foot movement relative to the substrate. Two footprint morphotypes, ~ 300 m apart, are defined on the palaeosurface. Tracks of morphotype I are tridactyl, shallow, contain digital pad impressions and were impressed on a firm, sand rippled substrate that underwent desiccation. Conversely, tracks of morphotype II are tetradactyl, deep, and have an elongated posterior region. These tracks are preserved on the surface of a massive sandstone and are associated with soft sediment collapse structures related to the animal’s foot sinking into the water-saturated, malleable sediment layer. Morphotype II tracks show that as the animal waded across the substrate, the liquefied sediment lost its cohesive strength and could only partially support the weight of the animal. In so doing, the animal’s foot sunk deep enough into the sediment such that the impression of the metatarsal and digit I (hallux) are now visible. Thus, the palaeosurface was walked on by small-to-medium sized theropods that traversed over ripple marks in firmer moist sand, as well as a larger theropod that tottered through water-logged sand

    First Lower Jurassic vertebrate burrow from southern Africa (upper Elliot Formation, Karoo Basin, South Africa)

    No full text
    Vertebrate burrows are common ichnofossils in the Permo-Triassic of the main Karoo Basin in South Africa. They are generally attributable to one of several lineages of therapsid, including the derived clade known as cynodonts. Despite the presence of cynodont species in the Upper Triassic and Lower Jurassic of the Karoo Supergroup, vertebrate burrows have never been reported from this part of the succession. Recent fieldwork recovered a semi-elliptical burrow cast in the Lower Jurassic upper Elliot Formation (Stormberg Group) on the farm Edelweiss 698 (Free State). The horizontal and vertical diameters of the burrow cast are ~ 18 and ~ 7 cm, respectively. This semi-horizontal, straight to slightly sinuous tunnel is ~ 50 cm long with a ramp angle of  20 cm deep) desiccation cracks, invertebrate trace fossils, calcareous rhizoconcretions, and spherical-to-elongated carbonate nodules. These and other associated sedimentary features provide evidence for a semi-arid, fluvio-lacustrine palaeoenvironment during the burrowing activity. Based on comparisons to fossil and modern burrows, this burrow cast is interpreted as a vertebrate burrow, and is the first record of vertebrate fossorial activity within the Lower Jurassic of southern Africa. The ancient burrow architect has yet to be positively identified. However, given the size and morphology of the burrow and the occurrence of similar sized fossil cynodont therapsids that inhabited the main Karoo Basin in the earliest Jurassic, the potential burrow-maker may be tentatively linked to the Cynodontia (e.g., Pachygenelus - an advanced tritheledontid).Fil: Bordy, E.M.. University Of Cape Town;Fil: Sciscio, L.. University Of Cape Town;Fil: Abdala, Nestor Fernando. University of the Witwatersrand; Sudáfrica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - Tucumán. Unidad Ejecutora Lillo; ArgentinaFil: McPhee, B.W.. University of the Witwatersrand; SudáfricaFil: Choiniere, J.N.. University of the Witwatersrand; Sudáfric
    corecore