5,674 research outputs found

    Lagune de Biétri: bathymétrie, courants et taux de renouvellement des eaux

    Get PDF
    An estimation of the currents in the Biétri bay is given (tidal currents and currents due to the wind). They are lower than 10 cm.s-1 in the whole lagoon, and near of 5 cm.s-1 in the eastern part. The measures of salinity and tidal observations give the average rate of water renewal, respectively 0.20 and 0.14 d-1 in the central and eastern areas

    Morphometric discrimination of two sympatric sibling species in the Palaearctic region, Culicoides obsoletus Meigen and C-scoticus Downes & Kettle (Diptera: Ceratopogonidae), vectors of bluetongue and Schmallenberg viruses

    Get PDF
    Background Some Palaearctic biting midge species (subgenus Avaritia) have been implicated as vectors of bluetongue virus in northern Europe. Separation of two species (C. obsoletus and C. scoticus) is considered difficult morphologically and, often, these female specimens are grouped in entomological studies. However, species-specific identification is desirable to understand their life history characteristics, assess their roles in disease transmission or measure their abundance during arboviral outbreaks. This study aims to investigate whether morphometric identification techniques can be applied to female C. obsoletus and C. scoticus individuals trapped at different geographical regions and time periods during the vector season. Methods C. obsoletus and C. scoticus were collected using light-suction traps from the UK, France and Spain, with two geographical locations sampled per country. A total of 759 C. obsoletus/C. scoticus individuals were identified using a molecular assay based on the cytochrome c oxidase subunit I gene. Fifteen morphometric measurements were taken from the head, wings and abdomen of slide-mounted specimens, and ratios calculated between these measurements. Multivariate analyses explored whether a combination of morphometric variables could lead to accurate species identification. Finally, Culicoides spp. collected in France at the start, middle and end of the adult vector season were compared, to determine whether seasonal variation exists in any of the morphometric measurements. Results The principal component analyses revealed that abdominal characteristics: length and width of the smaller and larger spermathecae, and the length of the chitinous plates and width between them, are the most reliable morphometric characteristics to differentiate between the species. Seasonal variation in the size of each species was observed for head and wing measurements, but not abdominal measurements. Geographical variation in the size of Culicoides spp. was also observed and is likely to be related to temperature at the trapping sites, with smaller individuals trapped at more southern latitudes. Conclusions Our results suggest that female C. obsoletus and C. scoticus individuals can be separated under a stereomicroscope using abdominal measurements. Although we show the length and width of the spermathecae can be used to differentiate between the species, this can be time-consuming, so we recommend undertaking this using standardized subsampling of catches. (Résumé d'auteur

    The national security key indicators as a part of economic development in the conditions of digitization

    Get PDF
    International audienceMethylglyoxal is a faulty metabolite. It is a ubiquitous by-product of glucose and amino acid metabolism that spontaneously reacts with proximal amino groups in proteins and nucleic acids, leading to impairment of their function. The glyoxalase pathway evolved early in phylogeny to bring about rapid catabolism of methylglyoxal, and an understanding of the role of methylglyoxal and the glyoxalases in many diseases is beginning to emerge. Metabolic processing of methylglyoxal is very rapid in vivo and thus notoriously difficult to detect and quantify. Here we show that C-13 nuclei in labeled methylglyoxal can be hyperpolarized using dynamic nuclear polarization, providing C-13 nuclear magnetic resonance signal enhancements in the solution state close to 5,000-fold. We demonstrate the applications of this probe of metabolism for kinetic characterization of the glyoxalase system in isolated cells as well as mouse brain, liver and lymphoma in vivo

    Tumour invasiveness, the local and systemic environment and the basis of staging systems in colorectal cancer

    Get PDF
    background: The present study aimed to examine the relationship between tumour invasiveness (T stage), the local and systemic environment and cancer-specific survival (CSS) of patients with primary operable colorectal cancer. methods: The tumour microenvironment was examined using measures of the inflammatory infiltrate (Klintrup-Makinen (KM) grade and Immunoscore), tumour stroma percentage (TSP) and tumour budding. The systemic inflammatory environment was examined using modified Glasgow Prognostic Score (mGPS) and neutrophil:lymphocyte ratio (NLR). A 5-year CSS was examined. results: A total of 331 patients were included. Increasing T stage was associated with colonic primary, N stage, poor differentiation, margin involvement and venous invasion (P<0.05). T stage was significantly associated with KM grade (P=0.001), Immunoscore (P=0.016), TSP (P=0.006), tumour budding (P<0.001), and elevated mGPS and NLR (both P<0.05). In patients with T3 cancer, N stage stratified survival from 88 to 64%, whereas Immunoscore and budding stratified survival from 100 to 70% and from 91 to 56%, respectively. The Glasgow Microenvironment Score, a score based on KM grade and TSP, stratified survival from 93 to 58%. conclusions: Although associated with increasing T stage, local and systemic tumour environment characteristics, and in particular Immunoscore, budding, TSP and mGPS, are stage-independent determinants of survival and may be utilised in the staging of patients with primary operable colorectal cancer

    Towards developmental modelling of tree root systems

    Get PDF
    Knowledge of belowground structures and processes is essential for understanding and predicting ecosystem functioning, and consequently in the development of adaptive strategies to safeguard production from trees and woody plants into the future. In the past, research has mainly been concentrated on growth models for the prediction of agronomic or forest production. Newly emerging scientific challenges, e.g. climate change and sustainable development, call for new integrated predictive methods where root systems development will become a key element for understanding global biological systems. The types of input data available from the various branches of woody root research, including biomass allocation, architecture, biomechanics, water and nutrient supply, are discussed with a view to the possibility of incorporating them into a more generic developmental model. We discuss here the main focus of root system modelling to date, including a description of simple allometric biomass models, and biomechanical stress models, and then build in complexity through static growth models towards architecture models. The next progressive and logical step in developing an inclusive developmental model that integrates these modelling approaches is discussed.Knowledge of belowground structures and processes is essential for understanding and predicting ecosystem functioning, and consequently in the development of adaptive strategies to safeguard production from trees and woody plants into the future. In the past, research has mainly been concentrated on growth models for the prediction of agronomic or forest production. Newly emerging scientific challenges, e.g. climate change and sustainable development, call for new integrated predictive methods where root systems development will become a key element for understanding global biological systems. The types of input data available from the various branches of woody root research, including biomass allocation, architecture, biomechanics, water and nutrient supply, are discussed with a view to the possibility of incorporating them into a more generic developmental model. We discuss here the main focus of root system modelling to date, including a description of simple allometric biomass models, and biomechanical stress models, and then build in complexity through static growth models towards architecture models. The next progressive and logical step in developing an inclusive developmental model that integrates these modelling approaches is discussed.Knowledge of belowground structures and processes is essential for understanding and predicting ecosystem functioning, and consequently in the development of adaptive strategies to safeguard production from trees and woody plants into the future. In the past, research has mainly been concentrated on growth models for the prediction of agronomic or forest production. Newly emerging scientific challenges, e.g. climate change and sustainable development, call for new integrated predictive methods where root systems development will become a key element for understanding global biological systems. The types of input data available from the various branches of woody root research, including biomass allocation, architecture, biomechanics, water and nutrient supply, are discussed with a view to the possibility of incorporating them into a more generic developmental model. We discuss here the main focus of root system modelling to date, including a description of simple allometric biomass models, and biomechanical stress models, and then build in complexity through static growth models towards architecture models. The next progressive and logical step in developing an inclusive developmental model that integrates these modelling approaches is discussed.Peer reviewe

    Synthesis and analysis of the anticancer activity of platinum(ii) complexes incorporating dipyridoquinoxaline variants

    Get PDF
    Eight platinum(ii) complexes with anticancer potential have been synthesised and characterised. These complexes are of the type [Pt(I)(A)], where I is either dipyrido[3,2-f:2′,3′-h]quinoxaline (dpq) or 2,3-dimethyl-dpq (23Medpq) and A is one of the R,R or S,S isomers of either 1,2-diaminocyclohexane (SS-dach or RR-dach) or 1,2-diaminocyclopentane (SS-dacp or RR-dacp). The CT-DNA binding of these complexes and a series of other complexes were assessed using fluorescent intercalator displacement assays, resulting in unexpected trends in DNA binding affinity. The cytotoxicity of the eight synthesised compounds was determined in the L1210 cell line; the most cytotoxic of these were [Pt(dpq)(SS-dach)]Cl and [Pt(dpq)(RR-dach)]Cl, with IC values of 0.19 and 0.80 μM, respectively. The X-ray crystal structure of the complex [Pt(dpq)(SS-dach)](ClO)·1.75HO is also reported. This journal i

    Matrix Models and D-branes in Twistor String Theory

    Full text link
    We construct two matrix models from twistor string theory: one by dimensional reduction onto a rational curve and another one by introducing noncommutative coordinates on the fibres of the supertwistor space P^(3|4)->CP^1. We comment on the interpretation of our matrix models in terms of topological D-branes and relate them to a recently proposed string field theory. By extending one of the models, we can carry over all the ingredients of the super ADHM construction to a D-brane configuration in the supertwistor space P^(3|4). Eventually, we present the analogue picture for the (super) Nahm construction.Comment: 1+37 pages, reference added, JHEP style, published versio

    T-Bet and Eomes Regulate the Balance between the Effector/Central Memory T Cells versus Memory Stem Like T Cells

    Get PDF
    Memory T cells are composed of effector, central, and memory stem cells. Previous studies have implicated that both T-bet and Eomes are involved in the generation of effector and central memory CD8 T cells. The exact role of these transcription factors in shaping the memory T cell pool is not well understood, particularly with memory stem T cells. Here, we demonstrate that both T-bet or Eomes are required for elimination of established tumors by adoptively transferred CD8 T cells. We also examined the role of T-bet and Eomes in the generation of tumor-specific memory T cell subsets upon adoptive transfer. We showed that combined T-bet and Eomes deficiency resulted in a severe reduction in the number of effector/central memory T cells but an increase in the percentage of CD62LhighCD44low Sca-1+ T cells which were similar to the phenotype of memory stem T cells. Despite preserving large numbers of phenotypic memory stem T cells, the lack of both of T-bet and Eomes resulted in a profound defect in antitumor memory responses, suggesting T-bet and Eomes are crucial for the antitumor function of these memory T cells. Our study establishes that T-bet and Eomes cooperate to promote the phenotype of effector/central memory CD8 T cell versus that of memory stem like T cells. © 2013 Li et al
    corecore