73 research outputs found

    A Nearest Neighbours-Based Algorithm for Big Time Series Data Forecasting

    Get PDF
    A forecasting algorithm for big data time series is presented in this work. A nearest neighbours-based strategy is adopted as the main core of the algorithm. A detailed explanation on how to adapt and imple ment the algorithm to handle big data is provided. Although some parts remain iterative, and consequently requires an enhanced implementation, execution times are considered as satisfactory. The performance of the proposed approach has been tested on real-world data related to elec tricity consumption from a public Spanish university, by using a Spark cluster.Ministerio de EconomĂ­a y Competitividad TIN2014-55894-C2-RJunta de AndalucĂ­a P12-TIC-1728Centro de Estudios Andaluces PRY153/14Universidad Pablo de Olavide APPB81309

    The regenerative potential of fibroblasts in a new diabetes-induced delayed humanised wound healing model

    Get PDF
    Cutaneous diabetic wounds greatly affect the quality of life of patients, causing a substantial economic impact on the healthcare system. The limited clinical success of conventional treatments is mainly attributed to the lack of knowledge of the pathogenic mechanisms related to chronic ulceration. Therefore, management of diabetic ulcers remains a challenging clinical issue. Within this context, reliable animal models that recapitulate situations of impaired wound healing have become essential. In this study, we established a new in vivo humanised model of delayed wound healing in a diabetic context that reproduces the main features of the human disease. Diabetes was induced by multiple low doses of streptozotocin in bioengineered human-skin-engrafted immunodeficient mice. The significant delay in wound closure exhibited in diabetic wounds was mainly attributed to alterations in the granulation tissue formation and resolution, involving defects in wound bed maturation, vascularisation, inflammatory response and collagen deposition. In the new model, a cell-based wound therapy consisting of the application of plasma-derived fibrin dermal scaffolds containing fibroblasts consistently improved the healing response by triggering granulation tissue maturation and further providing a suitable matrix for migrating keratinocytes during wound re-epithelialisation. The present preclinical wound healing model was able to shed light on the biological processes responsible for the improvement achieved, and these findings can be extended for designing new therapeutic approaches with clinical relevance.This work was supported by grants from the Science and Innovation Ministry of Spain (SAF2010-16976), from the European VI Framework Programme (LSHB-CT-512102), from Comunidad de Madrid (S2010/BMD-2420; CELLCAM) and from Fundacion Ramon Areces (CIVP16A1864)

    Fibroblasts activation and abnormal extracellular matrix remodelling as common hallmarks in three cancer-prone genodermatoses

    Get PDF
    Background. Recessive dystrophic epidermolysis bullosa (RDEB), Kindler syndrome (KS) and xeroderma pigmentosum complementation group C (XPC) are three cancer-prone genodermatoses whose causal genetic mutations cannot fully explain, on their own, the array of associated phenotypic manifestations. Recent evidence highlights the role of the stromal microenvironment in the pathology of these disorders. Objectives. To investigate, by means of comparative gene expression analysis, the role played by dermal fibroblasts in the pathogenesis of RDEB, KS and XPC. Methods. We conducted RNA-Seq analysis, which included a thorough examination of the differentially expressed genes, a functional enrichment analysis and a description of affected signalling circuits. Transcriptomic data were validated at the protein level in cell cultures, serum samples and skin biopsies. Results. Interdisease comparisons against control fibroblasts revealed a unifying signature of 186 differentially expressed genes and four signalling pathways in the three genodermatoses. Remarkably, some of the uncovered expression changes suggest a synthetic fibroblast phenotype characterized by the aberrant expression of extracellular matrix (ECM) proteins. Western blot and immunofluorescence in situ analyses validated the RNA-Seq data. In addition, enzyme-linked immunosorbent assay revealed increased circulating levels of periostin in patients with RDEB. Conclusions. Our results suggest that the different causal genetic defects converge into common changes in gene expression, possibly due to injury-sensitive events. These, in turn, trigger a cascade of reactions involving abnormal ECM deposition and underexpression of antioxidant enzymes. The elucidated expression signature provides new potential biomarkers and common therapeutic targets in RDEB, XPC and KS.This study was supported by grants from the Spanish Ministry of Economy and Competitiveness (SAF2013-43475R, SAF2017-88908-R and SAF2017-86810-R); from Instituto de Salud Carlos III and CIBERER, cofunded with European Regional Development Funds (ERDF) (PT13/0001/0007, PI14/00931, PI15/00716, PI15/00956, PT17/0009/0006 and PI17/01747); and from the European Union (HEALTH-F2-2011-261392 and H2020-INFRADEV-1-2015-1/ELIXIR-EXCELERATEref. 676559). Additional funding from Comunidad de Madrid (AvanCell-CM S2017/BMD-3692); Catalan Government (AGAUR 2014_SGR_603); ‘Fundacio' La MaratĂł de TV3, 01331-30’; CERCA Programme/Generalitat de Catalunya; and ‘FundaciĂłn CientĂ­fica de la AsociaciĂłn Española Contra el CĂĄncer’, Spain

    Description of two cultivated and two uncultivated new Salinibacter species, one named following the rules of the bacteriological code: Salinibacter grassmerensis sp. nov.; and three named following the rules of the SeqCode: Salinibacter pepae sp. nov., Salinibacter abyssi sp. nov., and Salinibacter pampae sp. nov.

    Get PDF
    Current -omics methods allow the collection of a large amount of information that helps in describing the microbial diversity in nature. Here, and as a result of a culturomic approach that rendered the collection of thousands of isolates from 5 different hypersaline sites (in Spain, USA and New Zealand), we obtained 21 strains that represent two new Salinibacter species. For these species we propose the names Salinibacter pepae sp. nov. and Salinibacter grassmerensis sp. nov. (showing average nucleotide identity (ANI) values < 95.09% and 87.08% with Sal. ruber M31T, respectively). Metabolomics revealed species-specific discriminative profiles. Sal. ruber strains were distinguished by a higher percentage of polyunsaturated fatty acids and specific N-functionalized fatty acids; and Sal. altiplanensis was distinguished by an increased number of glycosylated molecules. Based on sequence characteristics and inferred phenotype of metagenome-assembled genomes (MAGs), we describe two new members of the genus Salinibacter. These species dominated in different sites and always coexisted with Sal. ruber and Sal. pepae. Based on the MAGs from three Argentinian lakes in the Pampa region of Argentina and the MAG of the Romanian lake Fără Fund, we describe the species Salinibacter pampae sp. nov. and Salinibacter abyssi sp. nov. respectively (showing ANI values 90.94% and 91.48% with Sal. ruber M31T, respectively). Sal. grassmerensis sp. nov. name was formed according to the rules of the International Code for Nomenclature of Prokaryotes (ICNP), and Sal. pepae, Sal. pampae sp. nov. and Sal. abyssi sp. nov. are proposed following the rules of the newly published Code of Nomenclature of Prokaryotes Described from Sequence Data (SeqCode). This work constitutes an example on how classification under ICNP and SeqCode can coexist, and how the official naming a cultivated organism for which the deposit in public repositories is difficult finds an intermediate solution.This study was funded by the Spanish Ministry of Science, Innovation and Universities projects PGC2018-096956-B-C41, RTC-2017-6405-1 and PID2021-126114NB-C42, which were also supported by the European Regional Development Fund (FEDER). RRM acknowledges the financial support of the sabbatical stay at Georgia Tech and HelmholzZentrum MĂŒnchen by the grants PRX18/00048 and PRX21/00043 respectively also from the Spanish Ministry of Science, Innovation and Universities. This research was carried out within the framework of the activities of the Spanish Government through the “Maria de Maeztu Centre of Excellence” accreditation to IMEDEA (CSIC-UIB) (CEX2021-001198). KTK’s research was supported, in part, by the U.S. National Science Foundation (Award No. 1831582 and No. 2129823). IMG. AC and HLB were financially supported by a grant of the Ministry of Research, Innovation and Digitization, CNCS/CCCDI – UEFISCDI, project number PN-III-P4-ID-PCE-2020-1559, within PNCDI III. HLB acknowledges Ocna Sibiului City Hall (Sibiu County, Romania) for granting the access to Fără Fund Lake and A. Baricz and D.F. Bogdan for technical support during sampling and sample preparation. MBS thanks Dominion Salt for their assistance in sample Lake Grassmere. MELL acknowledges the financial support of the Argentinian National Scientific and Technical Research Council (Grant CONICET-NSFC 2017 N° IF-2018-10102222-APN-GDCT-CONICET) and the National Geographic Society (Grant # NGS 357R-18). BPH was supported by NASA (award 80NSSC18M0027). TV acknowledges the “Margarita Salas” postdoctoral grant, funded by the Spanish Ministry of Universities, within the framework of Recovery, Transformation and Resilience Plan, and funded by the European Union (NextGenerationEU), with the participation of the University of Balearic Islands (UIB)

    The extent and variability of storm-induced temperature changes in lakes measured with long-term and high-frequency data

    Get PDF
    The intensity and frequency of storms are projected to increase in many regions of the world because of climate change. Storms can alter environmental conditions in many ecosystems. In lakes and reservoirs, storms can reduce epilimnetic temperatures from wind-induced mixing with colder hypolimnetic waters, direct precipitation to the lake's surface, and watershed runoff. We analyzed 18 long-term and high-frequency lake datasets from 11 countries to assess the magnitude of wind- vs. rainstorm-induced changes in epilimnetic temperature. We found small day-to-day epilimnetic temperature decreases in response to strong wind and heavy rain during stratified conditions. Day-to-day epilimnetic temperature decreased, on average, by 0.28 degrees C during the strongest windstorms (storm mean daily wind speed among lakes: 6.7 +/- 2.7 m s(-1), 1 SD) and by 0.15 degrees C after the heaviest rainstorms (storm mean daily rainfall: 21.3 +/- 9.0 mm). The largest decreases in epilimnetic temperature were observed >= 2 d after sustained strong wind or heavy rain (top 5(th) percentile of wind and rain events for each lake) in shallow and medium-depth lakes. The smallest decreases occurred in deep lakes. Epilimnetic temperature change from windstorms, but not rainstorms, was negatively correlated with maximum lake depth. However, even the largest storm-induced mean epilimnetic temperature decreases were typicallyPeer reviewe

    Storm impacts on phytoplankton community dynamics in lakes

    Get PDF
    In many regions across the globe, extreme weather events such as storms have increased in frequency, intensity, and duration due to climate change. Ecological theory predicts that such extreme events should have large impacts on ecosystem structure and function. High winds and precipitation associated with storms can affect lakes via short-term runoff events from watersheds and physical mixing of the water column. In addition, lakes connected to rivers and streams will also experience flushing due to high flow rates. Although we have a well-developed understanding of how wind and precipitation events can alter lake physical processes and some aspects of biogeochemical cycling, our mechanistic understanding of the emergent responses of phytoplankton communities is poor. Here we provide a comprehensive synthesis that identifies how storms interact with lake and watershed attributes and their antecedent conditions to generate changes in lake physical and chemical environments. Such changes can restructure phytoplankton communities and their dynamics, as well as result in altered ecological function (e.g., carbon, nutrient and energy cycling) in the short- and long-term. We summarize the current understanding of storm-induced phytoplankton dynamics, identify knowledge gaps with a systematic review of the literature, and suggest future research directions across a gradient of lake types and environmental conditions.Peer reviewe

    Storm impacts on phytoplankton community dynamics in lakes

    Get PDF
    In many regions across the globe, extreme weather events, such as storms, have increased in frequency, intensity and duration. Ecological theory predicts that such extreme events should have large impacts on ecosystem structure and function. For lake ecosystems, high winds and rainfall associated with storms are linked by short term runoff events from catchments and physical mixing of the water column. Although we have a well-developed understanding of how such wind and precipitation events alter lake physical processes, our mechanistic understanding of how these short-term disturbances 48 translate from physical forcing to changes in phytoplankton communities is poor. Here, we provide a conceptual model that identifies how key storm features (i.e., the frequency, intensity, and duration of wind and precipitation) interact with attributes of lakes and their watersheds to generate changes in a lake’s physical and chemical environment and subsequently phytoplankton community structure and dynamics. We summarize the current understanding of storm-phytoplankton dynamics, identify knowledge gaps with a systematic review of the literature, and suggest future research directions by generating testable hypotheses across a global gradient of lake types and environmental conditions.Fil: Stockwell, Jason D.. University of Vermont; Estados UnidosFil: Adrian, Rita. Leibniz Institute of Freshwater Ecology and Inland Fisheries; AlemaniaFil: Andersen, Mikkel. Dundalk Institute of Technology; IrlandaFil: Anneville, Orlane. Institut National de la Recherche Agronomique; FranciaFil: Bhattacharya, Ruchi. University of Missouri; Estados UnidosFil: Burns, Wilton G.. University of Vermont; Estados UnidosFil: Carey, Cayelan C.. Virginia Tech University; Estados UnidosFil: Carvalho, Laurence. Freshwater Restoration & Sustainability Group; Reino UnidoFil: Chang, ChunWei. National Taiwan University; RepĂșblica de ChinaFil: De Senerpont Domis, Lisette N.. Netherlands Institute of Ecology; PaĂ­ses BajosFil: Doubek, Jonathan P.. University of Vermont; Estados UnidosFil: Dur, GaĂ«l. Shizuoka University; JapĂłnFil: Frassl, Marieke A.. Griffith University; AustraliaFil: Gessner, Mark O.. Leibniz Institute of Freshwater Ecology and Inland Fisheries; AlemaniaFil: Hejzlar, Josef. Biology Centre of the Czech Academy of Sciences; RepĂșblica ChecaFil: Ibelings, Bas W.. University of Geneva; SuizaFil: Janatian, Nasim. Estonian University of Life Sciences; EstoniaFil: Kpodonu, Alfred T. N. K.. City University of New York; Estados UnidosFil: Lajeunesse, Marc J.. University of South Florida; Estados UnidosFil: Lewandowska, Aleksandra M.. Tvarminne Zoological Station; FinlandiaFil: Llames, Maria Eugenia del Rosario. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Instituto de Investigaciones BiotecnolĂłgicas. Universidad Nacional de San MartĂ­n. Instituto de Investigaciones BiotecnolĂłgicas; ArgentinaFil: Matsuzaki, Shin-ichiro S.. National Institute for Environmental Studies; JapĂłnFil: Nodine, Emily R.. Rollins College; Estados UnidosFil: NĂ”ges, Peeter. Estonian University of Life Sciences; EstoniaFil: Park, Ho-Dong. Shinshu University; JapĂłnFil: Patil, Vijay P.. US Geological Survey; Estados UnidosFil: Pomati, Francesco. Swiss Federal Institute of Water Science and Technology; SuizaFil: Rimmer, Alon. Kinneret Limnological Laboratory; IsraelFil: Rinke, Karsten. Helmholtz-Centre for Environmental Research; AlemaniaFil: Rudstam, Lars G.. Cornell University; Estados UnidosFil: Rusak, James A.. Ontario Ministry of the Environment and Climate Change; CanadĂĄFil: Salmaso, Nico. Research and Innovation Centre - Fondazione Mach; ItaliaFil: Schmitt, François. Laboratoire d’OcĂ©anologie et de GĂ©osciences; FranciaFil: Seltmann, Christian T.. Dundalk Institute of Technology; IrlandaFil: Souissi, Sami. Universite Lille; FranciaFil: Straile, Dietmar. University of Konstanz; AlemaniaFil: Thackeray, Stephen J.. Lancaster Environment Centre; Reino UnidoFil: Thiery, Wim. Vrije Unviversiteit Brussel; BĂ©lgica. Institute for Atmospheric and Climate Science; SuizaFil: Urrutia Cordero, Pablo. Uppsala University; SueciaFil: Venail, Patrick. Universidad de Ginebra; SuizaFil: Verburg, Piet. 8National Institute of Water and Atmospheric Research; Nueva ZelandaFil: Williamson, Tanner J.. Miami University; Estados UnidosFil: Wilson, Harriet L.. Dundalk Institute of Technology; IrlandaFil: Zohary, Tamar. Israel Oceanographic & Limnological Research; IsraelGLEON 20: All Hands' MeetingRottnest IslandAustraliaUniversity of Western AustraliaUniversity of AdelaideGlobal Lake Ecological Observatory Networ

    Description of two cultivated and two uncultivated new Salinibacter species, one named following the rules of the bacteriological code: Salinibacter grassmerensis sp. nov.; and three named following the rules of the SeqCode: Salinibacter pepae sp. nov., Salinibacter abyssi sp. nov., and Salinibacter pampae sp. nov.

    Get PDF
    DATA AVAILABILITY : All data is publicly available in research repositories.Current ‐omics methods allow the collection of a large amount of information that helps in describing the microbial diversity in nature. Here, and as a result of a culturomic approach that rendered the collection of thousands of isolates from 5 different hypersaline sites (in Spain, USA and New Zealand), we obtained 21 strains that represent two new Salinibacter species. For these species we propose the names Salinibacter pepae sp. nov. and Salinibacter grassmerensis sp. nov. (showing average nucleotide identity (ANI) values < 95.09% and 87.08% with Sal. ruber M31T, respectively). Metabolomics revealed species‐specific discriminative profiles. Sal. ruber strains were distinguished by a higher percentage of polyunsaturated fatty acids and specific Nfunctionalized fatty acids; and Sal. altiplanensis was distinguished by an increased number of glycosylated molecules. Based on sequence characteristics and inferred phenotype of metagenome‐assembled genomes (MAGs), we describe two new members of the genus Salinibacter. These species dominated in different sites and always coexisted with Sal. ruber and Sal. pepae. Based on the MAGs from three Argentinian lakes in the Pampa region of Argentina and the MAG of the Romanian lake Fără Fund, we describe the species Salinibacter pampae sp. nov. and Salinibacter abyssi sp. nov. respectively (showing ANI values 90.94% and 91.48% with Sal. ruber M31T, respectively). Sal. grassmerensis sp. nov. name was formed according to the rules of the International Code for Nomenclature of Prokaryotes (ICNP), and Sal. pepae, Sal. pampae sp. nov. and Sal. abyssi sp. nov. are proposed following the rules of the newly published Code of Nomenclature of Prokaryotes Described from Sequence Data (SeqCode). This work constitutes an example on how classification under ICNP and SeqCode can coexist, and how the official naming a cultivated organism for which the deposit in public repositories is difficult finds an intermediate solution.The Spanish Ministry of Science, Innovation and Universities projects which were supported by the European Regional Development Fund (FEDER), in part by the U.S. National Science Foundation, a grant of the Ministry of Research, Innovation and Digitization, CNCS/CCCDI – UEFISCDI, the Argentinian National Scientific and Technical Research Council, the National Geographic Society, NASA, and the “Margarita Salas” postdoctoral grant, funded by the Spanish Ministry of Universities, within the framework of Recovery, Transformation and Resilience Plan, and funded by the European Union.http://www.elsevier.com/locate/syapmam2024BiochemistryForestry and Agricultural Biotechnology Institute (FABI)GeneticsMicrobiology and Plant PathologySDG-15:Life on lan
    • 

    corecore