Description of two cultivated and two uncultivated new Salinibacter species, one named following the rules of the bacteriological code: Salinibacter grassmerensis sp. nov.; and three named following the rules of the SeqCode: Salinibacter pepae sp. nov., Salinibacter abyssi sp. nov., and Salinibacter pampae sp. nov.

Abstract

DATA AVAILABILITY : All data is publicly available in research repositories.Current ‐omics methods allow the collection of a large amount of information that helps in describing the microbial diversity in nature. Here, and as a result of a culturomic approach that rendered the collection of thousands of isolates from 5 different hypersaline sites (in Spain, USA and New Zealand), we obtained 21 strains that represent two new Salinibacter species. For these species we propose the names Salinibacter pepae sp. nov. and Salinibacter grassmerensis sp. nov. (showing average nucleotide identity (ANI) values < 95.09% and 87.08% with Sal. ruber M31T, respectively). Metabolomics revealed species‐specific discriminative profiles. Sal. ruber strains were distinguished by a higher percentage of polyunsaturated fatty acids and specific Nfunctionalized fatty acids; and Sal. altiplanensis was distinguished by an increased number of glycosylated molecules. Based on sequence characteristics and inferred phenotype of metagenome‐assembled genomes (MAGs), we describe two new members of the genus Salinibacter. These species dominated in different sites and always coexisted with Sal. ruber and Sal. pepae. Based on the MAGs from three Argentinian lakes in the Pampa region of Argentina and the MAG of the Romanian lake Fără Fund, we describe the species Salinibacter pampae sp. nov. and Salinibacter abyssi sp. nov. respectively (showing ANI values 90.94% and 91.48% with Sal. ruber M31T, respectively). Sal. grassmerensis sp. nov. name was formed according to the rules of the International Code for Nomenclature of Prokaryotes (ICNP), and Sal. pepae, Sal. pampae sp. nov. and Sal. abyssi sp. nov. are proposed following the rules of the newly published Code of Nomenclature of Prokaryotes Described from Sequence Data (SeqCode). This work constitutes an example on how classification under ICNP and SeqCode can coexist, and how the official naming a cultivated organism for which the deposit in public repositories is difficult finds an intermediate solution.The Spanish Ministry of Science, Innovation and Universities projects which were supported by the European Regional Development Fund (FEDER), in part by the U.S. National Science Foundation, a grant of the Ministry of Research, Innovation and Digitization, CNCS/CCCDI – UEFISCDI, the Argentinian National Scientific and Technical Research Council, the National Geographic Society, NASA, and the “Margarita Salas” postdoctoral grant, funded by the Spanish Ministry of Universities, within the framework of Recovery, Transformation and Resilience Plan, and funded by the European Union.http://www.elsevier.com/locate/syapmam2024BiochemistryForestry and Agricultural Biotechnology Institute (FABI)GeneticsMicrobiology and Plant PathologySDG-15:Life on lan

    Similar works