300 research outputs found

    A balloon-borne 1 meter telescope for far-infrared astronomy

    Get PDF
    The flight of a balloon-borne one-meter telescope for infrared astronomy in the wavelength interval of 40 to 240 microns is discussed. The gyro-stabilized telescope mapped the intensity of the far infrared radiation from NGC 7538, Mars, the Orion Nebula, and W3 with a resolution of one minute and from selected regions of these sources with a resolution of 30 seconds. The infrared detection is described and its capabilities are analyzed. The instrumentation, orientation system, and modes of observation of the telescope are defined

    The near-infrared reflected spectrum of source I in Orion-KL

    Full text link
    Source I in the Orion-KL nebula is believed to be the nearest example of a massive star still in the main accretion phase. It is thus one of the best cases for studying the properties of massive protostars to constrain high-mass star formation theories. Near-infrared radiation from source I escapes through the cavity opened by the OMC1 outflow and is scattered by dust towards our line of sight. The reflected spectrum offers a unique possibility of observing the emission from the innermost regions of the system and probing the nature of source I and its immediate surroundings. We obtained moderately high spectral-resolution (R~9000) observations of the near-infrared diffuse emission in several locations around source I/Orion-KL. We observed a widespread rich absorption line spectrum that we compare with cool stellar photospheres and protostellar accretion disk models. The spectrum is broadly similar to strongly veiled, cool, low-gravity stellar photospheres in the range Teff~3500-4500 K, luminosity class I-III. An exact match explaining all features has not been found, and a plausible explanation is that a range of different temperatures contribute to the observed absorption spectrum. The 1D velocity dispersions implied by the absorption spectra, sigma~30 km/s, can be explained by the emission from a disk around a massive, mstar~10 Msun, protostar that is accreting at a high rate, mdot~3x10^{-3} Msun/yr. Our observations suggest that the near-infrared reflection spectrum observed in the Orion-KL region is produced close to source I and scattered to our line of sight in the OMC1 outflow cavity. The spectrum allows us to exclude source I being a very large, massive protostar rotating at breakup speed. We suggest that the absorption spectrum is produced in a disk surrounding a ~10 Msun protostar, accreting from its disk at a high rate of a few 10^{-3} Msun/yr.Comment: Accepted for publication on A&

    High-resolution infrared spectroscopy as a tool to detect false positives of transit search programs

    Full text link
    Transit search programs such as CoRoT and Kepler now have the capability of detecting planets as small as the Earth. The detection of these planets however requires the removal of all false positives. Although many false positives can be identified by a detailed analysis of the LCs, the detections of others require additional observations. An important source of false positives are faint eclipsing binaries within the PSF of the target stars. We develop a new method that allows us to detect faint eclipsing binaries with a separation smaller than one arcsec from target stars. We thereby focus on binaries that mimic the transits of terrestrial planets. These binaries can be either at the same distance as the target star (triple stars), or at either larger, or smaller distances. A close inspection of the problem indicates that in all relevant cases the binaries are brighter in the infrared than in the optical regime. We show how high resolution IR spectroscopy can be used to remove these false positives. For the triple star case, we find that the brightness difference between a primary and an eclipsing secondary is about 9-10 mag in the visual but only about 4.5-5.9 magnitudes in the K-band. We demonstrate how the triple star hypothesis can be excluded by taking a high-resolution IR spectrum. Simulations of these systems show that the companions can be detected with a false-alarm probability of 2%, if the spectrum has a S/N-ratio > 100. We show that high-resolution IR spectra also allows to detect most of the false positives caused by foreground or background binaries. If high resolution IR spectroscopy is combined with photometric methods, virtually all false positives can be detected without RV measurements. It is thus possible to confirm transiting terrestrial planets with a modest investment of observing time.Comment: 6 pages, 7 figure

    Computing and data processing

    Get PDF
    The applications of computers and data processing to astronomy are discussed. Among the topics covered are the emerging national information infrastructure, workstations and supercomputers, supertelescopes, digital astronomy, astrophysics in a numerical laboratory, community software, archiving of ground-based observations, dynamical simulations of complex systems, plasma astrophysics, and the remote control of fourth dimension supercomputers

    ESO Imaging Survey: infrared observations of CDF-S and HDF-S

    Get PDF
    This paper presents infrared data obtained from observations carried out at the ESO 3.5m New Technology Telescope (NTT) of the Hubble Deep Field South (HDF-S) and the Chandra Deep Field South (CDF-S). These data were taken as part of the ESO Imaging Survey (EIS) program, a public survey conducted by ESO to promote follow-up observations with the VLT. In the HDF-S field the infrared observations cover an area of ~53 square arcmin, encompassing the HST WFPC2 and STIS fields, in the JHKs passbands. The seeing measured in the final stacked images ranges from 0.79" to 1.22" and the median limiting magnitudes (AB system, 2" aperture, 5sigma detection limit) are J_AB~23.0, H_AB~22.8 and K_AB~23.0 mag. Less complete data are also available in JKs for the adjacent HST NICMOS field. For CDF-S, the infrared observations cover a total area of \~100 square arcmin, reaching median limiting magnitudes (as defined above) of J_AB~23.6 and K_AB~22.7 mag. For one CDF-S field H-band data are also available. This paper describes the observations and presents the results of new reductions carried out entirely through the un-supervised, high-throughput EIS Data Reduction System and its associated EIS/MVM C++-based image processing library developed, over the past 5 years, by the EIS project and now publicly available. The paper also presents source catalogs extracted from the final co-added images which are used to evaluate the scientific quality of the survey products, and hence the performance of the software. This is done comparing the results obtained in the present work with those obtained by other authors from independent data and/or reductions carried out with different software packages and techniques. The final science-grade catalogs and co-added images are available at CDS.Comment: Accepted for publication in A&A, 13 pages, 12 figures; a full resolution version of the paper is available from http://www.astro.ku.dk/~lisbeth/eisdata/papers/4528.pdf ; related catalogs and images are available through http://www.astro.ku.dk/~lisbeth/eisdata

    Implication of the overlap representation for modelling generalized parton distributions

    Get PDF
    Based on a field theoretically inspired model of light-cone wave functions, we derive valence-like generalized parton distributions and their double distributions from the wave function overlap in the parton number conserved s-channel. The parton number changing contributions in the t-channel are restored from duality. In our construction constraints of positivity and polynomiality are simultaneously satisfied and it also implies a model dependent relation between generalized parton distributions and transverse momentum dependent parton distribution functions. The model predicts that the t-behavior of resulting hadronic amplitudes depends on the Bjorken variable x_Bj. We also propose an improved ansatz for double distributions that embeds this property.Comment: 15 pages, 8 eps figure

    A long look at the BALQSO LBQS 2212-1759 with XMM-Newton

    Full text link
    Very long (172 ks effective exposure time) observations of the BALQSO LBQS 2212-1759 with XMM-Newton yield a stringent upper-limit on its 0.2-10 keV (rest- frame 0.64-32.2 keV) flux, F < 6 E-17 erg/cm2/s, while simultaneous UV and optical observations reveal a rather blue spectrum extending to 650 A in the source rest frame. These results are used to set a tight upper-limit on its optical to X-ray spectral index alpha_{ox} < -2.56. Given the HI-BAL nature of LBQS 212-1759, its X-ray weakness is most likely due to intrinsic absorption. If this is the case, and assuming that the intrinsic alpha_{ox} of LBQS 2212-1759 is -1.63 - a value appropriate for a radio-quiet quasar of this luminosity - one can set a lower limit on the X-ray absorbing column N_{H} > 3.4 E25 cm-2. Such a large column has a Thomson optical depth to electron scattering tau > 23, sufficient to extinguish the optical and UV emission. The problem only gets worse if the gas is neutral since the opacity in the Lyman continuum becomes extremely large, > 2 E8, conflicting with the source detection below 912 A. This apparent contradiction probably means that our lines-of-sight to the X-ray and to the UV emitting regions are different, such that the gas covers completely the compact X-ray source but only partially the more extended source of ultraviolet photons. An extended (~ 1') X-ray source is detected 2' to the south-east of the QSO. Given its thermal spectrum and temperature (1.5 < T < 3.0 keV}, it is probably a foreground (0.29 < z < 0.46) cluster of galaxies.Comment: 9 pages, 3 figures, A&A latex, accepted for publication in Astronomy & Astrophysic

    The Quintuplet Cluster I. A K-band spectral catalog of stellar sources

    Full text link
    Three very massive clusters are known to reside in the Galactic Center region, the Arches cluster, the Quintuplet cluster and the Central parsec cluster. We obtained spectroscopic observations of the Quintuplet cluster with the Integral Field Spectrograph SINFONI-SPIFFI at the ESO-VLT. The spectral range comprises the near-IR K-band from 1.94 to 2.45 micrometer. The 3D data cubes of the individual fields were flux-calibrated and combined to one contiguous cube, from which the spectra of all detectable point sources were extracted. We present a catalog of 160 stellar sources in the inner part of the Quintuplet cluster.Comment: 14 pages, 9 figures, 3 tables, accepted by A&

    Implications of quantum automata for contextuality

    Full text link
    We construct zero-error quantum finite automata (QFAs) for promise problems which cannot be solved by bounded-error probabilistic finite automata (PFAs). Here is a summary of our results: - There is a promise problem solvable by an exact two-way QFA in exponential expected time, but not by any bounded-error sublogarithmic space probabilistic Turing machine (PTM). - There is a promise problem solvable by an exact two-way QFA in quadratic expected time, but not by any bounded-error o(loglogn) o(\log \log n) -space PTMs in polynomial expected time. The same problem can be solvable by a one-way Las Vegas (or exact two-way) QFA with quantum head in linear (expected) time. - There is a promise problem solvable by a Las Vegas realtime QFA, but not by any bounded-error realtime PFA. The same problem can be solvable by an exact two-way QFA in linear expected time but not by any exact two-way PFA. - There is a family of promise problems such that each promise problem can be solvable by a two-state exact realtime QFAs, but, there is no such bound on the number of states of realtime bounded-error PFAs solving the members this family. Our results imply that there exist zero-error quantum computational devices with a \emph{single qubit} of memory that cannot be simulated by any finite memory classical computational model. This provides a computational perspective on results regarding ontological theories of quantum mechanics \cite{Hardy04}, \cite{Montina08}. As a consequence we find that classical automata based simulation models \cite{Kleinmann11}, \cite{Blasiak13} are not sufficiently powerful to simulate quantum contextuality. We conclude by highlighting the interplay between results from automata models and their application to developing a general framework for quantum contextuality.Comment: 22 page

    Acceleration Schemes for Ab-Initio Molecular Dynamics and Electronic Structure Calculations

    Full text link
    We study the convergence and the stability of fictitious dynamical methods for electrons. First, we show that a particular damped second-order dynamics has a much faster rate of convergence to the ground-state than first-order steepest descent algorithms while retaining their numerical cost per time step. Our damped dynamics has efficiency comparable to that of conjugate gradient methods in typical electronic minimization problems. Then, we analyse the factors that limit the size of the integration time step in approaches based on plane-wave expansions. The maximum allowed time step is dictated by the highest frequency components of the fictitious electronic dynamics. These can result either from the large wavevector components of the kinetic energy or from the small wavevector components of the Coulomb potential giving rise to the so called {\it charge sloshing} problem. We show how to eliminate large wavevector instabilities by adopting a preconditioning scheme that is implemented here for the first-time in the context of Car-Parrinello ab-initio molecular dynamics simulations of the ionic motion. We also show how to solve the charge-sloshing problem when this is present. We substantiate our theoretical analysis with numerical tests on a number of different silicon and carbon systems having both insulating and metallic character.Comment: RevTex, 9 figures available upon request, to appear in Phys. Rev.
    corecore