193 research outputs found

    Temporal dynamics of halogenated organic compounds in Marcellus Shale flowback

    Get PDF
    The chemistry of hydraulic fracturing fluids and wastewaters is complex and is known to vary by operator, geologic formation, and fluid age. A time series of hydraulic fracturing fluids, flowback fluids, and produced waters was collected from two adjacent Marcellus Shale gas wells for organic chemical composition analyses using ultrahigh resolution mass spectrometry. Hierarchical clustering was used to compare and extract ions related to different fluid ages and many halogenated organic molecular ions were identified in flowback fluids and early produced waters based on exact mass. Iodinated organic compounds were the dominant halogen class in these clusters and were nearly undetectable in hydraulic fracturing fluid prior to injection. The iodinated ions increased in flowback and remained elevated after ten months of well production. We suggest that these trends are mainly driven by dissolved organic matter reacting with reactive halogen species formed abiotically through oxidizing chemical additives applied to the well and biotically via iodide-oxidizing bacteria. Understanding the implications of these identified halogenated organic compounds will require future investigation in to their structures and environmental fate

    Autoinducers act as biological timers in Vibrio harveyi

    Get PDF
    Quorum sensing regulates cell density-dependent phenotypes and involves the synthesis, excretion and detection of so-called autoinducers. Vibrio harveyi strain ATCC BAA-1116 (recently reclassified as Vibrio campbellii), one of the best-characterized model organisms for the study of quorum sensing, produces and responds to three autoinducers. HAI-1, AI-2 and CAI-1 are recognized by different receptors, but all information is channeled into the same signaling cascade, which controls a specific set of genes. Here we examine temporal variations of availability and concentration of the three autoinducers in V. harveyi, and monitor the phenotypes they regulate, from the early exponential to the stationary growth phase in liquid culture. Specifically, the exponential growth phase is characterized by an increase in AI-2 and the induction of bioluminescence, while HAI-1 and CAI-1 are undetectable prior to the late exponential growth phase. CAI-1 activity reaches its maximum upon entry into stationary phase, while molar concentrations of AI-2 and HAI-1 become approximately equal. Similarly, autoinducer-dependent exoproteolytic activity increases at the transition into stationary phase. These findings are reflected in temporal alterations in expression of the luxR gene that encodes the master regulator LuxR, and of four autoinducer-regulated genes during growth. Moreover, in vitro phosphorylation assays reveal a tight correlation between the HAI-1/AI-2 ratio as input and levels of receptor-mediated phosphorylation of LuxU as output. Our study supports a model in which the combinations of autoinducers available, rather than cell density per se, determine the timing of various processes in V. harveyi populations

    Transitory Microbial Habitat in the Hyperarid Atacama Desert

    Get PDF
    Traces of life are nearly ubiquitous on Earth. However, a central unresolved question is whether these traces always indicate an active microbial community or whether, in extreme environments, such as hyperarid deserts, they instead reflect just dormant or dead cells. Although microbial biomass and diversity decrease with increasing aridity in the Atacama Desert, we provide multiple lines of evidence for the presence of an at times metabolically active, microbial community in one of the driest places on Earth. We base this observation on four major lines of evidence: a physico-chemical characterization of the soil habitability after an exceptional rain event, identified biomolecules indicative of potentially active cells [e.g., presence of ATP, phospholipid fatty acids (PLFAs), metabolites, and enzymatic activity], measurements of in situ replication rates of genomes of uncultivated bacteria reconstructed from selected samples, and microbial community patterns specific to soil parameters and depths. We infer that the microbial populations have undergone selection and adaptation in response to their specific soil microenvironment and in particular to the degree of aridity. Collectively, our results highlight that even the hyperarid Atacama Desert can provide a habitable environment for microorganisms that allows them to become metabolically active following an episodic increase in moisture and that once it decreases, so does the activity of the microbiota. These results have implications for the prospect of life on other planets such as Mars, which has transitioned from an earlier wetter environment to today's extreme hyperaridity. [Abstract copyright: Copyright © 2018 the Author(s). Published by PNAS.

    Moonraker -- Enceladus Multiple Flyby Mission

    Full text link
    Enceladus, an icy moon of Saturn, possesses an internal water ocean and jets expelling ocean material into space. Cassini investigations indicated that the subsurface ocean could be a habitable environment having a complex interaction with the rocky core. Further investigation of the composition of the plume formed by the jets is necessary to fully understand the ocean, its potential habitability, and what it tells us about Enceladus' origin. Moonraker has been proposed as an ESA M-class mission designed to orbit Saturn and perform multiple flybys of Enceladus, focusing on traversals of the plume. The proposed Moonraker mission consists of an ESA-provided platform, with strong heritage from JUICE and Mars Sample Return, and carrying a suite of instruments dedicated to plume and surface analysis. The nominal Moonraker mission has a duration of 13.5 years. It includes a 23-flyby segment with 189 days allocated for the science phase, and can be expanded with additional segments if resources allow. The mission concept consists in investigating: i) the habitability conditions of present-day Enceladus and its internal ocean, ii) the mechanisms at play for the communication between the internal ocean and the surface of the South Polar Terrain, and iii) the formation conditions of the moon. Moonraker, thanks to state-of-the-art instruments representing a significant improvement over Cassini's payload, would quantify the abundance of key species in the plume, isotopic ratios, and physical parameters of the plume and the surface. Such a mission would pave the way for a possible future landed mission.Comment: Accepted for publication in The Planetary Science Journa

    Moonraker: Enceladus Multiple Flyby Mission

    Get PDF
    Enceladus, an icy moon of Saturn, possesses an internal water ocean and jets expelling ocean material into space. Cassini investigations indicated that the subsurface ocean could be a habitable environment having a complex interaction with the rocky core. Further investigation of the composition of the plume formed by the jets is necessary to fully understand the ocean, its potential habitability, and what it tells us about Enceladus’s origin. Moonraker has been proposed as an ESA M-class mission designed to orbit Saturn and perform multiple flybys of Enceladus, focusing on traversals of the plume. The proposed Moonraker mission consists of an ESA-provided platform with strong heritage from JUICE and Mars Sample Return and carrying a suite of instruments dedicated to plume and surface analysis. The nominal Moonraker mission has a duration of ∼13.5 yr. It includes a 23-flyby segment with 189 days allocated for the science phase and can be expanded with additional segments if resources allow. The mission concept consists of investigating (i) the habitability conditions of present-day Enceladus and its internal ocean, (ii) the mechanisms at play for the communication between the internal ocean and the surface of the South Polar Terrain, and (iii) the formation conditions of the moon. Moonraker, thanks to state-of-the-art instruments representing a significant improvement over Cassini's payload, would quantify the abundance of key species in the plume, isotopic ratios, and the physical parameters of the plume and the surface. Such a mission would pave the way for a possible future landed mission

    A 32 kb Critical Region Excluding Y402H in CFH Mediates Risk for Age-Related Macular Degeneration

    Get PDF
    Complement factor H shows very strong association with Age-related Macular Degeneration (AMD), and recent data suggest that multiple causal variants are associated with disease. To refine the location of the disease associated variants, we characterized in detail the structural variation at CFH and its paralogs, including two copy number polymorphisms (CNP), CNP147 and CNP148, and several rare deletions and duplications. Examination of 34 AMD-enriched extended families (N = 293) and AMD cases (White N = 4210 Indian = 134; Malay = 140) and controls (White N = 3229; Indian = 117; Malay = 2390) demonstrated that deletion CNP148 was protective against AMD, independent of SNPs at CFH. Regression analysis of seven common haplotypes showed three haplotypes, H1, H6 and H7, as conferring risk for AMD development. Being the most common haplotype H1 confers the greatest risk by increasing the odds of AMD by 2.75-fold (95% CI = [2.51, 3.01]; p = 8.31×10−109); Caucasian (H6) and Indian-specific (H7) recombinant haplotypes increase the odds of AMD by 1.85-fold (p = 3.52×10−9) and by 15.57-fold (P = 0.007), respectively. We identified a 32-kb region downstream of Y402H (rs1061170), shared by all three risk haplotypes, suggesting that this region may be critical for AMD development. Further analysis showed that two SNPs within the 32 kb block, rs1329428 and rs203687, optimally explain disease association. rs1329428 resides in 20 kb unique sequence block, but rs203687 resides in a 12 kb block that is 89% similar to a noncoding region contained in ΔCNP148. We conclude that causal variation in this region potentially encompasses both regulatory effects at single markers and copy number

    Linking the FTO obesity rs1421085 variant circuitry to cellular, metabolic, and organismal phenotypes in vivo

    Get PDF
    Variants in FTO have the strongest association with obesity; however, it is still unclear how those noncoding variants mechanistically affect whole-body physiology. We engineered a deletion of the rs1421085 conserved cis-regulatory module (CRM) in mice and confirmed in vivo that the CRM modulates Irx3 and Irx5 gene expression and mitochondrial function in adipocytes. The CRM affects molecular and cellular phenotypes in an adipose depot–dependent manner and affects organismal phenotypes that are relevant for obesity, including decreased high-fat diet–induced weight gain, decreased whole-body fat mass, and decreased skin fat thickness. Last, we connected the CRM to a genetically determined effect on steroid patterns in males that was dependent on nutritional challenge and conserved across mice and humans. Together, our data establish cross-species conservation of the rs1421085 regulatory circuitry at the molecular, cellular, metabolic, and organismal level, revealing previously unknown contextual dependence of the variant’s action

    A marine biogenic source of atmospheric ice nucleating particles

    Get PDF
    The amount of ice present in clouds can affect cloud lifetime, precipitation and radiative properties1,2. The formation of ice in clouds is facilitated by the presence of airborne ice nucleating particles1,2. Sea spray is one of the major global sources of atmospheric particles, but it is unclear to what extent these particles are capable of nucleating ice3-11. Sea spray aerosol contains large amounts of organic material that is ejected into the atmosphere during bubble bursting at the organically enriched sea-air interface or sea surface microlayer12-19. Here we show that organic material in the sea surface microlayer nucleates ice under conditions relevant for mixed-phase cloud and high-altitude ice cloud formation. The ice nucleating material is likely biogenic and less than ~0.2 μm in size. We find that exudates separated from cells of the marine diatom T. Pseudonana nucleate ice and propose that organic material associated with phytoplankton cell exudates is a likely candidate for the observed ice nucleating ability of the microlayer samples. Global model simulations of marine organic aerosol in combination with our measurements suggest that marine organic material may be an important source of ice nucleating particles in remote marine environments such as the Southern Ocean, North Pacific and North Atlantic

    The Sariçiçek Howardite Fall in Turkey: Source Crater of HED Meteorites on Vesta and İmpact Risk of Vestoids

    Get PDF
    The Sariçiçek howardite meteorite shower consisting of 343 documented stones occurred on 2 September 2015 in Turkey and is the first documented howardite fall. Cosmogenic isotopes show that Sariçiçek experienced a complex cosmic ray exposure history, exposed during ~12–14 Ma in a regolith near the surface of a parent asteroid, and that an ~1 m sized meteoroid was launched by an impact 22 ± 2 Ma ago to Earth (as did one third of all HED meteorites). SIMS dating of zircon and baddeleyite yielded 4550.4 ± 2.5 Ma and 4553 ± 8.8 Ma crystallization ages for the basaltic magma clasts. The apatite U-Pb age of 4525 ± 17 Ma, K-Ar age of ~3.9 Ga, and the U,Th-He ages of 1.8 ± 0.7 and 2.6 ± 0.3 Ga are interpreted to represent thermal metamorphic and impact-related resetting ages, respectively. Petrographic, geochemical and O-, Cr- and Tiisotopic studies confirm that Sariçiçek belongs to the normal clan of HED meteorites. Petrographic observations and analysis of organic material indicate a small portion of carbonaceous chondrite material in the Sariçiçek regolith and organic contamination of the meteorite after a few days on soil. Video observations of the fall show an atmospheric entry at 17.3 ± 0.8 kms-1 from NW, fragmentations at 37, 33, 31 and 27 km altitude, and provide a pre-atmospheric orbit that is the first dynamical link between the normal HED meteorite clan and the inner Main Belt. Spectral data indicate the similarity of Sariçiçek with the Vesta asteroid family (V-class) spectra, a group of asteroids stretching to delivery resonances, which includes (4) Vesta. Dynamical modeling of meteoroid delivery to Earth shows that the complete disruption of a ~1 km sized Vesta family asteroid or a ~10 km sized impact crater on Vesta is required to provide sufficient meteoroids ≤4 m in size to account for the influx of meteorites from this HED clan. The 16.7 km diameter Antonia impact crater on Vesta was formed on terrain of the same age as given by the 4He retention age of Sariçiçek. Lunar scaling for crater production to crater counts of its ejecta blanket show it was formed ~22 Ma ago
    corecore