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• FT-ICR-MS reveals temporal changes in shale gas well organic chemical composition  23	  

• Many organohalogens in fluid were unique to the first 3 months of well operation 24	  

• Iodinated organic ions in fluid remain abundant over ten months of well operation 25	  

• Abiotic and biotic reactions may drive iodinated organic compound formation  26	  
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Abstract 27	  

 The chemistry of hydraulic fracturing fluids and wastewaters is complex and is known to 28	  

vary by operator, geologic formation, and fluid age. A time series of hydraulic fracturing fluids, 29	  

flowback fluids, and produced waters was collected from two adjacent Marcellus Shale gas wells 30	  

for organic chemical composition analyses using ultrahigh resolution mass spectrometry. 31	  

Hierarchical clustering was used to compare and extract ions related to different fluid ages and 32	  

many halogenated organic molecular ions were identified in flowback fluids and early produced 33	  

waters based on exact mass. Iodinated organic compounds were the dominant halogen class in 34	  

these clusters and were nearly undetectable in hydraulic fracturing fluid prior to injection. The 35	  

iodinated ions increased in flowback and remained elevated after ten months of well production. 36	  

We suggest that these trends are mainly driven by dissolved organic matter reacting with reactive 37	  

halogen species formed abiotically through oxidizing chemical additives applied to the well and 38	  

biotically via iodide-oxidizing bacteria. Understanding the implications of these identified 39	  

halogenated organic compounds will require future investigation in to their structures and 40	  

environmental fate.  41	  

 42	  

1. Introduction 43	  

 Halogenated organic compounds (HOCs) have been recently identified in shale gas 44	  

wastewaters using both targeted and non-targeted analytical approaches (Hoelzer et al., 2016; 45	  

Luek et al., 2017; Maguire-Boyle and Barron, 2014). Furthermore, HOCs are of particular 46	  

interest because they are not known additives used in the hydraulic fracturing process and 47	  

although a handful of mechanisms have been proposed, their origin remains unknown (Hoelzer 48	  
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et al., 2016; Luek et al., 2017; Maguire-Boyle and Barron, 2014). The environmental fate and 49	  

toxicity of these compounds also remains unknown.  50	  

 Non-targeted ultrahigh resolution Fourier transform ion cyclotron resonance mass 51	  

spectrometry (FT-ICR-MS) is widely used to investigate the chemical composition of diverse 52	  

organic matter based on its high mass accuracy and resolution (Dvorski et al., 2016; Gonsior et 53	  

al., 2011; Kellerman et al., 2014; Roullier-Gall et al., 2015; Walker et al., 2014). This approach 54	  

has been applied to complex natural and engineered systems to describe compositional changes 55	  

not understood a prior and without the use of hundreds or thousands of costly analytical 56	  

standards (Chen et al., 2016; Gonsior et al., 2016; Lavonen et al., 2013; Shakeri Yekta et al., 57	  

2012; Sleighter et al., 2014). Ultrahigh resolution FT-ICR-MS operated in negative mode is an 58	  

appropriate approach for identifying unknown deprotonated HOCs including diverse disinfection 59	  

by-products (DBPs) (Gonsior et al., 2015; Lavonen et al., 2013; Luek et al., 2017; Xu et al., 60	  

2013). Paired with solid phase extraction (Dittmar et al., 2008), FT-ICR-MS is uniquely suited 61	  

for describing the temporal dynamics of diverse HOCs found in high salinity shale gas 62	  

wastewater. 63	  

 Understanding the behavior of HOCs within an individual hydraulic fracturing well is 64	  

essential for narrowing down their possible origins and environmental fate. HOCs have been 65	  

hypothesized to be transformation products (Hoelzer et al., 2016; Luek et al., 2017), but time 66	  

series data have not been used previously to investigate this possibility. Therefore, the aim of this 67	  

study was to track changes to the dissolved organic matter (DOM) pool of Marcellus Shale gas 68	  

well fluids over the first ten months of well operation. Specifically, we combined solid phase 69	  

extraction with FT-ICR-MS and used hierarchical clustering analysis to identify key shifts in the 70	  

distribution of HOCs and suggest plausible formation mechanisms. 71	  
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 72	  

2. Methods 73	  

 Hydraulic fracturing fluid, flowback fluid, and produced water samples were collected 74	  

from two adjacent hydraulic fracturing wells at the Marcellus Shale Energy and Environment 75	  

Laboratory (MSEEL) field site in Morgantown, WV (Figure S1) between November 2015 and 76	  

September 2016 (Carr, 2017). DOM was solid phase extracted from water samples and analyzed 77	  

using FT-ICR-MS. Hierarchical clustering analyses were performed on the resulting ions and 78	  

assigned molecular formulas to track the temporal trends of HOCs.  79	  

2.1 Sample Collection 80	  

 MSEEL wells MIP-3H and MIP-5H (herein referred to as 3H and 5H) were sampled 81	  

from a gas-fluid separator in autoclaved high-density polyethylene carboys from the separator 82	  

outlet. Fluid was then transferred in to 1L base-washed low-density polyethylene containers 83	  

using a peristaltic pump, minimizing headspace. Samples were collected approximately daily 84	  

during the initial week of flowback (December 2015, fluid production rates as high as 1000 85	  

barrels d-1), bi-weekly for the following 3 months (early production water, fluid production rates 86	  

10s of barrels d-1), monthly for 3 months, and then bimonthly (late production water, fluid 87	  

production rates very low, ~1 barrel d-1) (mseel.org). On certain dates, the 5H well was not 88	  

producing fluid so no sample was collected. Samples were refrigerated at 4 °C and shipped on 89	  

ice within two weeks of collection. One field blank was collected by taking MilliQ water in to 90	  

the field and then processed in the same manner as samples.  91	  

2.2 Organics extraction 92	  

 Upon receipt, samples were filtered over a 0.7 µm glass fiber filter (Whatman GF/F) in to 93	  

glass bottles previously baked at 500 °C. Filtered samples (200 mL) for solid phase extraction 94	  
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were immediately acidified to pH 2 with concentrated hydrochloric acid and extracted over 95	  

1g/6mL Bond Elut PPL solid phase extraction cartridges (preconditioned with 2 cartridge 96	  

volumes of methanol followed by 2 volumes of 0.1% formic acid solution) (Dittmar et al., 2008). 97	  

Loaded cartridges were desalted using a 200 mL dilute hydrochloric acid rinse (pH = 2) followed 98	  

by a 30 mL 0.1% formic acid solution rinse to avoid halide contamination of the methanolic 99	  

extract. Large volume washing of cartridges reduces the likelihood of iodo-adducts (Luek et al., 100	  

2017; Xu et al., 2013) and prior investigations with high and ultrahigh resolution electrospray 101	  

mass spectrometry have confirmed covalently-bound iodine in complex mixtures (Luek et al., 102	  

2017; Moulin et al., 2001; Xu et al., 2013). Cartridges were dried under vacuum and eluted with 103	  

10 mL ultrapure methanol. Methanolic extracts were stored at -20 °C prior to FT-ICR-MS 104	  

analysis.  105	  

2.3 FT-ICR-MS analysis 106	  

 Methanolic extracts were diluted 1:5 in ultrapure methanol and injected at 120 uL hr-1 107	  

using a Bruker Solarix 12T electrospray ionization FT-ICR-MS located at the Helmholtz 108	  

Zentrum Munich, Germany. The instrument was operated in negative mode to target solid phase 109	  

extracted compounds and target HOCs. Complementary positive ionization was not performed 110	  

although this mode could have ionized additional organic compounds, including nitrogen 111	  

containing HOCs. 500 scans were averaged for each sample and a post calibration was 112	  

performed using a list of known DOM internal calibrants to obtain a mass accuracy of less than 113	  

0.1 ppm (Table S1). The obtained full scan mass resolution was better than 400,000 at m/z 400, 114	  

allowing for precise formula assignments (Hertkorn et al., 2008). All m/z ions identified in the 115	  

field blank were removed prior to further processing. Following the methods of Sleighter et al., 116	  

(2012) replicate sample mass spectra were compared to confirm that variability in the mass 117	  
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spectral analysis across samples was different from variability among extraction replicates as a 118	  

function of the % of overlapping m/z ions and a regression of peak magnitudes from two 119	  

replicates (Figure S2, S3).  120	  

 Because the ions of interest were not understood a priori, no surrogate or internal 121	  

standards were added to samples prior to extraction or analysis, and hence why FT-ICR-MS is 122	  

used as a semi-quantitative approach. Ion suppression issues caused by changes in the matrix 123	  

were limited by diluting samples sufficiently as determined by the transient spectra. However, 124	  

remaining extraction and ionization efficiency issues are not addressed using this non-targeted 125	  

approach. For this reason, changes that would only be consistent with the expected changes in 126	  

the matrix itself (i.e., consistently present in only unbroken fracturing fluids but absent in all 127	  

flowback and produced waters, the largest contrast in the fluid matrices) were not discussed to 128	  

limit false pattern identification.  129	  

2.4 Hierarchical Cluster Analysis 130	  

 Hierarchical cluster analysis was performed using Gene Cluster 3.0 and TreeView on log 131	  

transformed ion abundances to limit clustering driven only by high intensity ions. Clustering 132	  

analysis using average linkages was performed on uncentered m/z ions identified in each well on 133	  

ions present in 2 or more samples between m/z 150 – 400 (3H, n= 6613; 5H, n=5296). Clusters 134	  

were selected with ions unique to flowback and early produced waters (first three months of well 135	  

operation) and assigned formulas.  136	  

2.5 Formula Assignments 137	  

 Formulas were assigned to individual ions from the entire spectra including selected 138	  

hierarchical clusters using in-house software (Hertkorn et al., 2008). A range of 150 - 700 m/z 139	  

was selected to encompass the majority of ions in the spectra and where the calibration is reliable 140	  
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to 0.1 ppm. Formulas were assigned with a maximum value per assignment of 141	  

C100H∞O80N3S2Cl3Br3I3 and a maximum error of 0.2 ppm. The mass error associated with ions 142	  

identified below the lowest molecular weight calibrant was sufficient for formula assignment in 143	  

this 0.2 ppm window. Nonsensical formula assignments were removed using a number of criteria 144	  

in favor of alternative plausible formula assignments. Formulas not passing the nitrogen rule 145	  

(McLafferty and Turecek, 1993) were removed within this software and remaining assignments 146	  

were further reduced to remove invalid formulas by removing those with an oxygen to carbon 147	  

ratio (O/C) greater than one or a negative double bond equivalent (DBE). Raw values of 148	  

formulas containing only carbon, hydrogen, and oxygen (CHO), as well as nitrogen (CHON) or 149	  

sulfur (CHOS) number between m/z 150-700 are reported in Figure S4. 150	  

 Additional filtering of assigned formulas identified during the cluster analysis involved 151	  

removing assignments with more than 3 heteroatoms (e.g., CHOI3 kept, CHOI3S1 removed) and 152	  

preferentially removing duplicate assignments with very low O/C ratios and higher heteroatoms 153	  

based on consistencies found when checking many assigned formulas against isotopic pattern 154	  

matching and consistently confirming their alternatives. For example, of the observed m/z ions 155	  

assigned to an iodinated formula, approximately 50% had a duplicate formula assignment 156	  

containing S and Cl, but were determined false assignments because the distinctive 35Cl to 37Cl 157	  

isotopic ratios were not observed in the mass spectra. It is possible that this stringent filtering 158	  

criteria may have removed a small number of correct formula assignments but was necessary for 159	  

management of the large dataset.  160	  

Halogenated formula assignments were compared to their theoretical isotopic patterns 161	  

(Figure S5) and those ions not matching their theoretical isotopic distribution were removed 162	  

(<0.1 ppm error with error consistent across isotopes and maximum 10% error in magnitude). 163	  
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HOCs found using the cluster analysis with insufficient intensity to confirm isotopically were not 164	  

removed (43% of HOC formulas). However, about half of these low intensity ions were 165	  

members of a homologous series for which at least one member was confirmed isotopically. 166	  

Degree of confidence for halogenated formula assignments is discussed in Section 3.1 and 167	  

reported in Table S4. Assigned formulas matching known compounds are putatively named as 168	  

such based on their plausible presence in these fluids and likelihood to ionize under the methods 169	  

used, but have not been confirmed structurally. 170	  

 171	  

3 Results and Discussion 172	  

3.1 Cluster analysis reveals halogenated ions unique to early produced waters 173	  

 Due to the obvious differences in the injected fluid (unbroken gel) and the flowback and 174	  

produced waters (broken gels & shale derived fluids), hierarchical clusters that only described 175	  

differences between identified ions the injected fluid and flowback and produced waters were not 176	  

compared to avoid improper comparisons based on possible extraction differences between these 177	  

two fluid types. Instead, ions unique to a certain period of flowback were selected, absent both 178	  

before and after the selected period and therefore both the broken and unbroken fluid types. 179	  

Three clusters could be identified in the 3H well series that contained ions unique to different 180	  

flowback and early produced waters, representing three fluid age groups (3S-1, 3S-2, and 3S-3) 181	  

(Figure S6). The 5H well series contained fewer samples and only one cluster of ions unique to 182	  

flowback and early produced waters could be identified (5S-2) (Figure S7). All m/z ions 183	  

identified in these clusters are given in supplemental Table S2 regardless of whether or not they 184	  

could be assigned an unambiguous molecular formula. 185	  
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 The molecular formulas identified in the four selected clusters are presented as Van 186	  

Krevelen diagrams to visualize differences in the formula assignments as a function of 187	  

heteroatom type (Figure 1) (van Krevelen, 1950) and oxidation and saturation status. The 188	  

selected clusters contained a large number of heteroatom formula assignments rather than those 189	  

containing only carbon, hydrogen, and oxygen typically dominant in natural organic matter 190	  

(Table S3). The ions in clusters 3S-1, 3S-2, and 5S-2 contain similar DOM heteroatom classes 191	  

and distributions, with 74 ions shared between the 5H well cluster and either the 3S-1 or 3S-2 192	  

cluster. In contrast, only three of the 5H well cluster ions overlapped with those in cluster 3-S3. 193	  

A large number of ions containing both nitrogen and sulfur were observed. 194	  

 195	  
Figure 1. Oxygen to carbon (O/C) ratio versus hydrogen to carbon (H/C) ratio of formulas 196	  
assigned to molecular ions (van Krevelen, 1950) for hierarchical clusters unique to flowback and 197	  
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early produced waters a) 3S-2 b) 5S-2 c) 3S-1 d) 3S-3. Fluid ages for most ions in each cluster 198	  
are given. 199	  
 200	  
 Cluster 3S-3, representing ions present only in early produced waters (32-80 d), was 201	  

distinct from the other clusters, containing 155 ions with halogenated formula assignments that 202	  

could be validated to varying degrees (Table S4). The majority of ions were iodinated (52%), 203	  

while 20% were brominated, 9% were chlorinated, and 19% contained two different halogens. 204	  

Sixty-five of these halogenated formula assignments were supported with secondary peaks 205	  

matching their theoretical stable isotopic spectra (e.g., Figure S5). Five iodinated ions had been 206	  

previously identified in a North Dakota flowback fluid where their assignment was supported by 207	  

the appearance of a 126.9045 m/z peak (iodine) during fragmentation (Luek et al., 2017). Of the 208	  

remaining ions assigned plausible halogenated formulas, many were members of homologous 209	  

series [separated by CH2 groups determined using kmd/z* values (Shakeri Yekta et al., 2012)] 210	  

where at least one member of the series had been confirmed isotopically. Thirty-eight of the 211	  

remaining halogenated formula assignments had intensities too low to rely on isotopic pattern 212	  

matching (particularly iodinated assignments which rely solely on the 13C peak). Among the 213	  

other three clusters, only five plausible halogenated formula assignments were identified and 214	  

three confirmed using isotopic pattern matching.  215	  

The overlap of many nitrogen and/or sulfur containing compounds between the 3H well 216	  

and the 5H well clusters suggests similar processes are occurring in both wells resulting in these 217	  

ions unique to flowback and early produced waters. This is expected due to their similar 218	  

hydraulic fracturing fluids and underlying geology. In contrast, the absence of a 5H well cluster 219	  

containing HOCs suggests a possible differences between the two wells, possibly related to the 220	  

smaller quantity of ammonium persulfate breaker added to 5H well (see Section 3.3). 221	  

 222	  
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3.2 Iodinated organic ions high in flowback and produced water 223	  

 Due to the large number of iodinated organic compounds identified during the 224	  

hierarchical cluster analysis, we further investigated the temporal dynamics of this specific class 225	  

of compounds. Iodinated organic compounds are of particular interest due to their limited known 226	  

natural occurrence (Dembitsky, 2006) and the toxicity of known iodinated disinfection by-227	  

products (Duirk et al., 2011; Plewa et al., 2004; Richardson et al., 2008). Iodinated organic 228	  

compounds were tracked across all fluids in the time series to investigate this class of HOCs. 229	  

Prior to injection, the fracturing fluids were nearly devoid of iodinated ions, with three or fewer 230	  

identified at relatively low abundances in individual samples (Figure 2a). Beginning with the 231	  

first week of flowback, the number of iodinated ions increased, and remained high in all 232	  

produced water samples out to 276 days. The cumulative abundance of all iodinated ions also 233	  

followed this trend, with higher intensities but more variability observed in the 3H well. A small 234	  

volume (20 mL) quality control extraction was performed in August 2016 on all previously 235	  

collected samples and showed the same trends over the time series. The small volume extractions 236	  

had slightly lower numbers of ions and intensities, likely related to either the smaller sample 237	  

volumes or the aging of the fluids prior to extraction (3-7 months storage unfiltered at 4 °C). 238	  

Because of the expected variability in the make-up of the injected fluid and wastewaters over 239	  

time, the changes in iodinated ion number and abundance were also computed relative to the 240	  

number and cumulative abundance of CHO ions present in each fluid sample (Figure 2b). The 241	  

same temporal trends are observed on the basis of raw number and abundance as are seen 242	  

relative to CHO ions. The observed pattern is in contrast to the temporal trends for CHO, CHON, 243	  

and CHOS ions over the time series (Figure S4). This supports that the observed trends are 244	  
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indeed a function of actual changes in the fluid mixture rather than as a function of analytical 245	  

differences due to ion suppression or extraction efficiency.  246	  

 The majority of the iodinated ions confirmed with 13C isotopic pattern matching 247	  

contained only carbon, hydrogen, oxygen, and one iodine atom, but seven ions contained 248	  

nitrogen or sulfur (Table 1), and five ions contained two iodine atoms. The largest iodinated ion 249	  

confirmed with 13C was m/z 433.1206. Above this value, other peaks could be assigned iodinated 250	  

formulas, but none had sufficient intensity to allow for confirmation with the 13C peak. All ions 251	  

identified in the 5H well were also identified in the 3H well, but 11 iodinated ions present in the 252	  

3H well were not identified in the 5H well. FT-ICR-MS provides no structural information, but 253	  

some structures can be inferred based on the limited number of structural isomers for small 254	  

compounds and their ability to be extracted and ionize under the experimental conditions. For 255	  

example, the corresponding neutral formula C2H2O2I2 is expected to be diiodoacetic acid, a 256	  

known disinfection by-product (DBP) (Plewa et al., 2004) and naturally occurring compound 257	  

(Dembitsky, 2006). However, most identified ions are large and therefore cannot be structurally 258	  

determined without additional analyses. 259	  

 The observed distribution of O/C and H/C ratios of these iodinated compounds (Figure 260	  

S8) was consistent with the distribution of aromatic, particularly oxygen-rich and phenolic 261	  

compounds (e.g., fulvic acids) susceptible to reaction with reactive iodine (Moulin et al., 2001). 262	  

Halogenation of unsaturated compounds, aromatics, substituted aromatics (i.e., phenols) and 263	  

natural organic matter can occur rapidly via electrophilic aromatic substitution (Criquet et al., 264	  

2015; Westerhoff et al., 2004). A similar distribution (based on O/C vs. H/C) of iodinated DBPs 265	  

was formed during the chloramination of drinking water containing iodide, indicating the 266	  
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preferential formation of iodinated compounds from these aromatic DOM precursors (Wang et 267	  

al., 2016).  268	  

  269	  

 270	  
 271	  
Figure 2. MSEEL 3H and 5H iodinated ion number and cumulative iodinated ion abundance as 272	  
raw values (a) and as a percent of CHO number and cumulative abundance (b). Injected fluids 273	  
are shown as a time point prior to Day 1 of flowback. 274	  
 275	  
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Table 1. Iodinated molecular formulas supported with 13C peak identified in 2 or more samples. 276	  
pPreviously identified in fracturing fluid (Luek et al., 2017).  SExact masses also identified in 277	  
stream water DOM unrelated to hydraulic fracturing. 3Ions unique to the 3H well.  278	  
 279	  
Measured 

Mass 
No. Times 
identified H C O N S I 

236.9054p 16 2 5 3 0 0 1 
276.9367S 16 6 8 3 0 0 1 
282.9473 11 8 7 4 0 0 1 
292.8952 8 2 7 5 0 0 1 
292.9316p 18 6 8 4 0 0 1 
305.9633 33 9 9 3 1 0 1 
306.9109 18 4 8 5 0 0 1 
306.9473S 17 8 9 4 0 0 1 
308.9266 21 6 8 5 0 0 1 
310.8072p 7 1 2 2 0 0 2 
320.963 17 10 10 4 0 0 1 
322.8072 33 1 3 2 0 0 2 
322.9422 19 8 9 5 0 0 1 
322.9786 14 12 10 4 0 0 1 
327.0099S 21 16 10 4 0 0 1 
334.9422S 18 8 10 5 0 0 1 
334.9786 13 12 11 4 0 0 1 
336.9579 19 10 10 5 0 0 1 
338.9194 9 8 9 4 0 1 1 
338.9735 15 12 10 5 0 0 1 
339.0099 2 16 11 4 0 0 1 
342.9143 8 8 8 5 0 1 1 
343.0048 14 16 10 5 0 0 1 
345.0205 14 18 10 5 0 0 1 
350.9372 19 8 10 6 0 0 1 
350.9735 16 12 11 5 0 0 1 
351.0099 23 16 12 4 0 0 1 
352.9528 16 10 10 6 0 0 1 
352.9892 18 14 11 5 0 0 1 
355.0048p 12 16 11 5 0 0 1 
355.0412 23 20 12 4 0 0 1 
357.0205 4 18 11 5 0 0 1 
364.9528S 17 10 11 6 0 0 1 
367.0049 7 16 12 5 0 0 1 
369.0205 53 18 12 5 0 0 1 
370.0521 2 21 12 4 1 0 1 
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376.9528S 17 10 12 6 0 0 1 
376.9891 11 14 13 5 0 0 1 
378.9684S 18 12 12 6 0 0 1 
379.0048 9 16 13 5 0 0 1 
381.0205 10 18 13 5 0 0 1 
383.0361 33 20 13 5 0 0 1 
387.031 43 20 12 6 0 0 1 

392.9476S 18 10 12 7 0 0 1 
397.0154 11 18 13 6 0 0 1 
399.0311S 7 20 13 6 0 0 1 
401.0467 23 22 13 6 0 0 1 
402.8334 5 5 8 3 0 0 2 
404.00 33 15 14 5 1 0 1 

406.9633S 16 12 13 7 0 0 1 
420.8076 5 3 7 5 0 0 2 
421.0153 9 18 15 6 0 0 1 
423.031 10 20 15 6 0 0 1 
425.0467 11 22 15 6 0 0 1 
427.026 8 20 14 7 0 0 1 
427.0623 6 24 15 6 0 0 1 
428.7796 9 3 5 5 0 1 2 
433.1206 20 30 14 5 2 0 1 

 280	  
3.3 Possible origins of halogenated organic compounds 281	  

 Four sources have been proposed for the origin of HOCs in flowback fluids: a) chemical 282	  

additives in the hydraulic fracturing fluid b) leached shale molecules c) biotic reactions between 283	  

additives and/or shale compounds and d) abiotic reactions between additives and/or shale 284	  

compounds (Hoelzer et al., 2016; Luek et al., 2017; Maguire-Boyle and Barron, 2014). The 285	  

specific additives reported for MSEEL wells on the FracFocus database (fracfocus.org) do not 286	  

contain HOCs, so this is an unlikely source. 287	  

 Thousands of naturally occurring HOCs do exist (Gribble, 2010), but the number of 288	  

known iodinated compounds is limited, with just over 110 compounds identified in the published 289	  

literature (Dembitsky, 2006). We searched all samples for the exact masses of all known 290	  

biogenic iodinated organic compounds (Dembitsky, 2006) and identified four. Three of these 291	  
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four were supported with their 13C peak, diiodoacetic acid (m/z 310.80717), iodotyrosine (m/z 292	  

305.96326) and iodophloroglucinol (m/z 376.95276, also identified in fracturing fluid prior to 293	  

injection), while diiodomethane (m/z 266.81732) was present at low abundances so the expected 294	  

13C peak would be below the baseline and therefore could not be confirmed. To this end, the 295	  

Marcellus shale could contain HOCs derived from ancient biogenic processes that were not 296	  

remineralized during diagenesis and slowly leached from the shale as the wells matured. 297	  

However, many biogenic halogenated formulas, such as methyl halides and halogenated phenols 298	  

can be microbially degraded (Gribble, 2010), and likely would not persist in the environment 299	  

over geologic timescales. Although the HOC content of shales is poorly characterized, their 300	  

probable degradation indicates that an ancient biogenic origin for the identified HOCs is 301	  

unlikely.  302	  

 In addition to their possible sourcing as natural biogenic products, diiodomethane and 303	  

diiodoacetic acid can also be formed as disinfection by-products (DBPs). These two compounds 304	  

were not the only putatively identified DBPs in this dataset; several other exact masses also 305	  

matched known DBPs. The exact masses of DBPs detected only in flowback and produced 306	  

waters included those matching halogenated acetic acids, iodomethylbutenedioic acid, and 307	  

several halogenated aromatic structures (halogenated benzaldehydes, benzoic acids, phenols, and 308	  

benzoquinones). Halogenated DBPs can be formed when oxidizing chemicals such as 309	  

chloramines and persulfates react with halides to form reactive halogen species, which 310	  

subsequently react with DOM and xenobiotic compounds (Gong and Zhang, 2015; Plewa et al., 311	  

2004; Postigo et al., 2016; Wang et al., 2016; Xie et al., 2015). Of the identified iodinated 312	  

molecular formulas (Table 1), all but 7 had their non-iodinated counterparts (replacing I with H) 313	  

present in MSEEL samples and were also present at high intensity (>108).  314	  
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 Ammonium persulfate (listed as diammonium peroxidisulphate on the FracFocus report), 315	  

a strong oxidizing agent, was used in both the 3H and 5H well hydraulic fracturing fluids 316	  

(fracfocus.org). Persulfate oxidation has been used as an advanced oxidation process in 317	  

wastewater treatment, relying on the activation of persulfate (via heat, UV light, ultrasound, or 318	  

an electron) to form two sulfate radicals (Matzek and Carter, 2016). High temperatures found in 319	  

the Marcellus Shale at depth and many potential electron donors (e.g., transition metals, 320	  

additives) could activate the added persulfate. The resulting sulfate radicals are highly reactive, 321	  

and can propagate a number of diverse reactions beyond their intended role of breaking 322	  

polymers. Persulfate oxidation can form reactive halogens including iodine, hypoiodite, radical 323	  

iodine, and others that can ultimately react with organic compounds including DOM and phenols 324	  

to form DBPs (Lu et al., 2015; Wang et al., 2017). The observation of more diverse HOCs 325	  

present in the 3H well than the 5H well is consistent with a persulfate source for these 326	  

compounds, as ammonium persulfate was applied at a concentration 75 times higher in the 3H 327	  

well than the 5H well (0.00074% vs. 0.00001% by mass of hydraulic fracturing fluid). 328	  

Additionally, reactive iodine species involved in these halogenation reactions can also be formed 329	  

through natural processes (without the external addition of oxidant additives) through abiotic 330	  

reactions with DOM (Li et al., 2012) and oxidation of iodide to reactive iodine by biotically 331	  

produced hydrogen peroxide and organic acids (Steinberg et al., 2008).  332	  

 Bacteria known to oxidize iodide have been identified in hydraulic fracturing 333	  

wastewaters previously (Amachi et al., 2005; Murali Mohan et al., 2013), and may be an 334	  

additional source of reactive iodine. These bacteria are capable of converting inorganic iodide to 335	  

reactive iodine that can subsequently react with DOM along the same pathways as abiotically-336	  

produced reactive iodine. Although biocides are employed to limit bacterial growth, diverse and 337	  
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active communities are found in these fluids downhole (Cluff et al., 2014; Daly et al., 2016; 338	  

Mouser et al., 2016; Murali Mohan et al., 2013), with hydraulic fracturing increasing the shale 339	  

poresize and removing this physical limitation for microbial life in the deep shales (Mouser et 340	  

al., 2016). We searched for taxa phylogenetically associated to known iodide-oxidizing bacteria 341	  

in 16S rRNA data from MSEEL samples. Taxa closely related to uncultured Roseovarius spp. 342	  

were observed in MSEEL 3H drilling muds (2-4%) as well as flowback and early produced 343	  

fluids (from 2 through 119 days) from both the 3H and 5H wells (<1%) (Figure S9, Table S5) 344	  

(unpublished data from Kelly Wrighton, for methods see Cluff et al., 2014; Daly et al., 2016). 345	  

Some Roseovarius spp. are capable of iodide oxidation in conjunction with production of 346	  

iodinated organic compounds, including methyl halides (Amachi et al., 2005; Fuse et al., 2003). 347	  

This reaction requires iodide, an oxidant (e.g., peroxide), and appropriate genes (i.e. halide 348	  

peroxidases) that are poorly characterized in bacteria. As mineral iodides and oxidants (e.g. 349	  

persulfate) are present in this system, these data suggest the potential exists for biotic production 350	  

of iodinated organic compounds in conjunction with abiotic reactions in this system, albeit by 351	  

low abundance microbial community members.  352	  

 353	  

4. Conclusions 	  354	  

 Iodinated organic ions were tracked through the first nine months of operation of two 355	  

Marcellus Shale gas wells using FT-ICR-MS and revealed a steep increase in the number of ions 356	  

assigned iodinated organic molecular formulas during the initial flowback period. The number 357	  

and abundance of iodinated organic ions remained elevated in produced waters 276 days later. 358	  

Hierarchical clustering analysis also revealed a large number of iodinated, brominated and 359	  

chlorinated ions that were unique to fluids returning to the surface of the 3H well 1-3 months 360	  
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after the initial flowback. We suggest that biotic and abiotic oxidation of halides subsequently 361	  

reacting with diverse DOM contributes to the observed organohalogen diversity and temporal 362	  

dynamics. Tracking changes in the chemical composition of shale gas fluids is essential for 363	  

understanding fundamental changes occurring in hydraulic fracturing fluids, particularly those 364	  

driven by known additives and microbial communities. Although many similarities were 365	  

observed between the two wells, their differences raise questions as to why these differences 366	  

exist: Do they reflect differences in geology, hydraulic fracturing fluid mixtures, hydraulic 367	  

fracturing techniques, or some other undescribed variable? More work on this topic is needed to 368	  

better understand how these results can be generalized to different wells. Understanding why 369	  

differences are observed across hydraulic fracturing wastewaters is essential for understanding 370	  

the fundamental functions occurring within a well, and for addressing more applied questions of 371	  

which wastewaters are suitable for reuse or a given treatment technique. 372	  

 373	  

Supplemental Materials 374	  

 Supplementary data related to this article can be found at http:// 375	  
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