583 research outputs found

    Managing 'mixedness': Understanding the effects of public sector reform in human service organisations

    Get PDF
    Our government is confronted with many unintended effects of policy programs. In order to address these problems, a large number of public sector reforms have been implemented over the past decades. These reforms formed a reaction to implementation problems rather than to problems in relation to policy content: more and more, policy makers seem to have recognised that not so much the provisions that were offered, but the process of policy implementation generated its own effects and was an important source of problems. At times, high expectations existed as concerns the effects of policy sector reforms. Time and again, however, reform outcomes did not live up to expectations. How come? These reforms were mostly aimed at human service provision: the softer sectors of the public sphere in which interaction between citizens (in their role as clients) and the state takes place, as in the field of education, the police, public assistance, health care, etc. Human service provision is of a fundamentally mixed nature: general regulations are applied to individual clients. In day-to-day business, implementation problems are the result of inherent dilemmas in human service provision. We argue that these reforms do not live up to expectations, because they cannot fully cope with the dilemmas that originate from the fundamentally mixed nature of human service provision. In this paper we make a start with combining insights from implementation theory with research on public sector reform. We argue that this link has been missing so far in discussions on public management and public sector reform. The inherent ‘mixedness’ in human service provision needs to be acknowledged in order to better understand the effects of public sector reform in organisations that provide ‘human services’ . This paper is structured as follows. First, we build an argument as to why human service organisations have a inherent ‘mixed’ nature. We discuss three levels on which this ‘mixedness’ is observable: on the level of the organisational environment, the level of the organisational structure and on the level of individual service provision. Second, we briefly discuss the rise and characteristics of reform trajectories in the Dutch public sector. We link the ideas and features of these reform strategies to the unique nature of human service provision in order to explain why these kinds of reform do not result in their expected outcomes.Session 4: Public Managemen

    Thermal fission cross section measurements of 243Cm and 245Cm

    Get PDF
    A new measurement program was set up at SCK-CEN to determine the thermal neutroninduced fission cross section of a number of Cm isotopes. The experiments are performed at a thermal neutron beam from the graphite moderated reactor BR1 at SCK-CEN. This paper presents preliminary results of our ^243Cm(n,f) and ^245Cm(n,f) cross-section measurements

    Characteristics of light charged particle emission in the ternary fission of 250Cf and 252Cf at different excitation energies

    Get PDF
    The emission probabilities and the energy distributions of tritons, α and ^6He particles emitted in the spontaneous ternary fission (zero excitation energy) of ^250Cf and ^252Cf and in the cold neutron induced fission (excitation energy ≈ 6.5 MeV) of ^249Cf and 251Cf are determined. The particle identification was done with suited ΔE-E telescope detectors, at the IRMM (Geel, Belgium) for the spontaneous fission and at the ILL (Grenoble, France) for the neutron induced fission measurements. Hence particle emission characteristics of the fissioning systems ^250Cf and ^252Cf are obtained at zero and at about 6.5 MeV excitation energies. While the triton emission probability is hardly influenced by the excitation energy, the ^4He and ^6He emission probability in spontaneous fission is higher than for neutron induced fission. This can be explained by the strong influence of the cluster preformation probability on the ternary particle emission probability

    Deep sleep maintains learning efficiency of the human brain

    Get PDF
    It is hypothesized that deep sleep is essential for restoring the brain's capacity to learn efficiently, especially in regions heavily activated during the day. However, causal evidence in humans has been lacking due to the inability to sleep deprive one target area while keeping the natural sleep pattern intact. Here we introduce a novel approach to focally perturb deep sleep in motor cortex, and investigate the consequences on behavioural and neurophysiological markers of neuroplasticity arising from dedicated motor practice. We show that the capacity to undergo neuroplastic changes is reduced by wakefulness but restored during unperturbed sleep. This restorative process is markedly attenuated when slow waves are selectively perturbed in motor cortex, demonstrating that deep sleep is a requirement for maintaining sustainable learning efficiency

    Time-of-flight and activation experiments on 147Pm and 171Tm for astrophysics

    Get PDF
    The neutron capture cross section of several key unstable isotopes acting as branching points in the s-process are crucial for stellar nucleosynthesis studies, but they are very challenging to measure due to the difficult production of sufficient sample material, the high activity of the resulting samples, and the actual (n,Îł) measurement, for which high neutron fluxes and effective background rejection capabilities are required. As part of a new program to measure some of these important branching points, radioactive targets of 147Pm and 171Tm have been produced by irradiation of stable isotopes at the ILL high flux reactor. Neutron capture on 146Nd and 170Er at the reactor was followed by beta decay and the resulting matrix was purified via radiochemical separation at PSI. The radioactive targets have been used for time-of-flight measurements at the CERN n-TOF facility using the 19 and 185 m beam lines during 2014 and 2015. The capture cascades were detected using a set of four C6D6 scintillators, allowing to observe the associated neutron capture resonances. The results presented in this work are the first ever determination of the resonance capture cross section of 147Pm and 171Tm. Activation experiments on the same 147Pm and 171Tm targets with a high-intensity 30 keV quasi-Maxwellian flux of neutrons will be performed using the SARAF accelerator and the Liquid-Lithium Target (LiLiT) in order to extract the corresponding Maxwellian Average Cross Section (MACS). The status of these experiments and preliminary results will be presented and discussed as well

    Control-based imputation for sensitivity analyses in informative censoring for recurrent event data

    Get PDF
    In clinical trials, missing data commonly arise through nonadherence to the randomized treatment or to study procedure. For trials in which recurrent event endpoints are of interests, conventional analyses using the proportional intensity model or the count model assume that the data are missing at random, which cannot be tested using the observed data alone. Thus, sensitivity analyses are recommended. We implement the control-based multiple imputation as sensitivity analyses for the recurrent event data. We model the recurrent event using a piecewise exponential proportional intensity model with frailty and sample the parameters from the posterior distribution. We impute the number of events after dropped out and correct the variance estimation using a bootstrap procedure. We apply the method to an application of sitagliptin study

    Status of evaluated data files for 238U in the resonance region

    Get PDF
    Experimental data and evaluated data libraries related to neutron induced reaction cross sections for 238U in the resonance region are reviewed. Based on this review a set of test files is produced to study systematic effects such as the impact of the upper boundary of the resolved resonance region (RRR) and the representation of the infinite diluted capture and in-elastic cross section in the unresolved resonance region (URR). A set of Benchmark experiments was selected and used to verify the test files. Based on these studies recommendations to perform a new evaluation have been defined. This report has been prepared in support to the CIELO (Collaborative International Evaluated Library Organisation) project. The objective of this project is the creation of a world-wide recognised nuclear data file with a focus on six nuclides, i.e. 1H, 16O, 56Fe, 235U, 238U and 239Pu. Within the CIELO project, the Joint Research Centre (JRC) at Geel (B) is in charge of the production of an evaluated cross section data file for neutron induced reaction of 238U in the resonance region.JRC.D.4-Standards for Nuclear Safety, Security and Safeguard

    High accuracy 234U(n,f) cross section in the resonance energy region

    Get PDF
    New results are presented of the 234U neutron-induced fission cross section, obtained with high accuracy in the resonance region by means of two methods using the 235U(n,f) as reference. The recent evaluation of the 235U(n,f) obtained with SAMMY by L. C. Leal et al. (these Proceedings), based on previous n-TOF data [1], has been used to calculate the 234U(n,f) cross section through the 234U/235U ratio, being here compared with the results obtained by using the n-TOF neutron flux

    New measurement of the 242Pu(n,Îł) cross section at n-TOF-EAR1 for MOX fuels : Preliminary results in the RRR

    Get PDF
    The spent fuel of current nuclear reactors contains fissile plutonium isotopes that can be combined with 238U to make mixed oxide (MOX) fuel. In this way the Pu from spent fuel is used in a new reactor cycle, contributing to the long-term sustainability of nuclear energy. The use of MOX fuels in thermal and fast reactors requires accurate capture and fission cross sections. For the particular case of 242Pu, the previous neutron capture cross section measurements were made in the 70's, providing an uncertainty of about 35% in the keV region. In this context, the Nuclear Energy Agency recommends in its "High Priority Request List" and its report WPEC-26 that the capture cross section of 242Pu should be measured with an accuracy of at least 7-12% in the neutron energy range between 500 eV and 500 keV. This work presents a brief description of the measurement performed at n-TOF-EAR1, the data reduction process and the first ToF capture measurement on this isotope in the last 40 years, providing preliminary individual resonance parameters beyond the current energy limits in the evaluations, as well as a preliminary set of average resonance parameters
    • 

    corecore