79 research outputs found
Increased wildfire risk driven by climate and development interactions in the Bolivian Chiquitania, Southern Amazonia.
This is the final version of the article. Available from the publisher via the DOI in this record.Wildfires are becoming increasingly dominant in tropical landscapes due to reinforcing feedbacks between land cover change and more severe dry conditions. This study focused on the Bolivian Chiquitania, a region located at the southern edge of Amazonia. The extensive, unique and well-conserved tropical dry forest in this region is susceptible to wildfires due to a marked seasonality. We used a novel approach to assess fire risk at the regional level driven by different development trajectories interacting with changing climatic conditions. Possible future risk scenarios were simulated using maximum entropy modelling with presence-only data, combining land cover, anthropogenic and climatic variables. We found that important determinants of fire risk in the region are distance to roads, recent deforestation and density of human settlements. Severely dry conditions alone increased the area of high fire risk by 69%, affecting all categories of land use and land cover. Interactions between extreme dry conditions and rapid frontier expansion further increased fire risk, resulting in potential biomass loss of 2.44±0.8 Tg in high risk area, about 1.8 times higher than the estimates for the 2010 drought. These interactions showed particularly high fire risk in land used for 'extensive cattle ranching', 'agro-silvopastoral use' and 'intensive cattle ranching and agriculture'. These findings have serious implications for subsistence activities and the economy in the Chiquitania, which greatly depend on the forestry, agriculture and livestock sectors. Results are particularly concerning if considering the current development policies promoting frontier expansion. Departmental protected areas inhibited wildfires when strategically established in areas of high risk, even under drought conditions. However, further research is needed to assess their effectiveness accounting for more specific contextual factors. This novel and simple modelling approach can inform fire and land management decisions in the Chiquitania and other tropical forest landscapes to better anticipate and manage large wildfires in the future.The author(s) received no specific funding
for this research. The study was mostly self-funded
by the corresponding author TD as part of her PhD
thesis. TD was supported by the Santander
Academic Travel Award to visit INPE as part of this
study
Cardiovascular changes after administration of aerosolized salbutamol in horses: five cases
Prevention and treatment of intraoperative hypoxemia in horses is difficult and both efficacy and safety of therapeutic maneuvers have to be taken into account. Inhaled salbutamol has been suggested as treatment of hypoxia in horses during general anesthesia, due to safety and ease of the technique. The present report describes the occurrence of clinically relevant unwanted cardiovascular effects (i.e. tachycardia and blood pressure modifications) in 5 horses undergoing general anesthesia in dorsal recumbency after salbutamol inhalation. Balanced anesthesia based on inhalation of isoflurane in oxygen or oxygen and air and continuous rate infusion (CRI) of lidocaine, romifidine, or combination of lidocaine and guaifenesine and ketamine was provided. Supportive measures were necessary to restore normal cardiovascular function in all horses but no long-term adverse effects were noticed in any of the cases
Osteopontin characterizes bile duct-associated macrophages and correlates with liver fibrosis severity in primary sclerosing cholangitis
Background and Aims:
Primary sclerosing cholangitis (PSC) is an immune-mediated cholestatic liver disease for which pharmacological treatment options are currently unavailable. PSC is strongly associated with colitis and a disruption of the gut-liver axis, and macrophages are involved in the pathogenesis of PSC. However, how gut-liver interactions and specific macrophage populations contribute to PSC is incompletely understood.
Approach and Results:
We investigated the impact of cholestasis and colitis on the hepatic and colonic microenvironment, and performed an in-depth characterization of hepatic macrophage dynamics and function in models of concomitant cholangitis and colitis. Cholestasis-induced fibrosis was characterized by depletion of resident KCs, and enrichment of monocytes and monocyte-derived macrophages (MoMFs) in the liver. These MoMFs highly express triggering-receptor-expressed-on-myeloid-cells-2 (Trem2) and osteopontin (Spp1), markers assigned to hepatic bile duct-associated macrophages, and were enriched around the portal triad, which was confirmed in human PSC. Colitis induced monocyte/macrophage infiltration in the gut and liver, and enhanced cholestasis-induced MoMF-Trem2 and Spp1 upregulation, yet did not exacerbate liver fibrosis. Bone marrow chimeras showed that knockout of Spp1 in infiltrated MoMFs exacerbates inflammation in vivo and in vitro, while monoclonal antibody–mediated neutralization of SPP1 conferred protection in experimental PSC. In human PSC patients, serum osteopontin levels are elevated compared to control, and significantly increased in advanced stage PSC and might serve as a prognostic biomarker for liver transplant-free survival.
Conclusions:
Our data shed light on gut-liver axis perturbations and macrophage dynamics and function in PSC and highlight SPP1/OPN as a prognostic marker and future therapeutic target in PSC.publishedVersio
Metallothionein ameliorates burn sepsis partly via activation of Akt signaling pathway in mice: a randomized animal study
Pluto's lower atmosphere and pressure evolution from ground-based stellar occultations, 1988-2016
Context. The tenuous nitrogen (N2) atmosphere on Pluto undergoes strong seasonal effects due to high obliquity and orbital eccentricity, and has recently (July 2015) been observed by the New Horizons spacecraft.
Aims. The main goals of this study are (i) to construct a well calibrated record of the seasonal evolution of surface pressure on Pluto and (ii) to constrain the structure of the lower atmosphere using a central flash observed in 2015.
Methods. Eleven stellar occultations by Pluto observed between 2002 and 2016 are used to retrieve atmospheric profiles (density, pressure, temperature) between altitude levels of ~5 and ~380 km (i.e. pressures from ~ 10 μbar to 10 nbar).
Results. (i) Pressure has suffered a monotonic increase from 1988 to 2016, that is compared to a seasonal volatile transport model, from which tight constraints on a combination of albedo and emissivity of N2 ice are derived. (ii) A central flash observed on 2015 June 29 is consistent with New Horizons REX profiles, provided that (a) large diurnal temperature variations (not expected by current models) occur over Sputnik Planitia; and/or (b) hazes with tangential optical depth of ~0.3 are present at 4–7 km altitude levels; and/or (c) the nominal REX density values are overestimated by an implausibly large factor of ~20%; and/or (d) higher terrains block part of the flash in the Charon facing hemisphere
Preclinical and Clinical Therapeutic Strategies Affecting Tumor-Associated Macrophages in Hepatocellular Carcinoma
Hepatocellular carcinoma (HCC) most often develops in patients with underlying liver disease characterized by chronic nonresolving inflammation. Tumor-associated macrophages (TAMs) are one of the most abundant immune cell populations within the tumoral microenvironment. As key actors of cancer-related inflammation, they promote tumor growth by suppression of effective anticancer immunity, stimulation of angiogenesis, and tissue remodeling. Therefore, they have become an attractive and promising target for immunotherapy. The heterogeneity of TAM subtypes and their origin and dynamic phenotype during the initiation and progression of HCC has been partially unraveled and forms the base for the development of therapeutic agents. Current approaches are aimed at decreasing the population of TAMs by depleting macrophages present in the tumor, blocking the recruitment of bone marrow-derived monocytes, and/or functionally reprogramming TAMs to antitumoral behavior. In this review, the preclinical evolution and hitherto clinical trials for TAM-targeted therapy in HCC will be highlighted
Dynamic characterization of composites with embedded shape memory alloys: Some experimental results
- …
