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Abstract
Wildfires are becoming increasingly dominant in tropical landscapes due to reinforcing feed-

backs between land cover change andmore severe dry conditions. This study focused on the

Bolivian Chiquitania, a region located at the southernedge of Amazonia. The extensive,

unique and well-conserved tropical dry forest in this region is susceptible to wildfires due to a

marked seasonality. We used a novel approach to assess fire risk at the regional level driven

by different development trajectories interactingwith changing climatic conditions. Possible

future risk scenarioswere simulated usingmaximumentropy modellingwith presence-only

data, combining land cover, anthropogenic and climatic variables. We found that important

determinantsof fire risk in the region are distance to roads, recent deforestation and density of

human settlements. Severely dry conditions alone increased the area of high fire risk by 69%,

affecting all categories of land use and land cover. Interactions between extreme dry condi-

tions and rapid frontier expansion further increased fire risk, resulting in potential biomass loss

of 2.44±0.8 Tg in high risk area, about 1.8 times higher than the estimates for the 2010
drought. These interactions showed particularlyhigh fire risk in land used for ‘extensive cattle

ranching’, ‘agro-silvopastoral use’ and ‘intensive cattle ranching and agriculture’. These find-

ings have serious implications for subsistence activities and the economy in the Chiquitania,

which greatly depend on the forestry, agricultureand livestock sectors. Results are particularly

concerning if considering the current development policies promoting frontier expansion.

Departmentalprotected areas inhibitedwildfireswhen strategically established in areas of

high risk, even under drought conditions. However, further research is needed to assess their

effectiveness accounting for more specific contextual factors. This novel and simplemodelling

approach can inform fire and landmanagement decisions in the Chiquitania and other tropical

forest landscapes to better anticipate andmanage largewildfires in the future.
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Introduction
Wildfires in Amazonia are expected to increase as the region is exposed to higher temperatures
and water stress over the 21st century [1–4]. Amazonian droughts such as that in the 1997/98
have been strongly related to El Niño events [5], and more recently to tropical Atlantic Sea Sur-
face Temperature (SST) anomalies which have been linked to so called ‘mega-fires’ in the
severely dry years of 2005 and 2010 [1,6,7]. A reduction in rainfall over Amazonia acts syner-
gistically with other drivers such as land cover change, creating positive feedbacks that increase
the susceptibility of the region to wildfires [8–13].

An increase in wildfire poses a threat to Amazon forests, affecting their structure and com-
position with the likelihood of a forest transition or dieback [14–19]. This in turn has effects on
the global carbon balance further contributing to global warming [20,3]. Alencar et al. [20] esti-
mated that widespread understory fires during the 1997/98 El Niño event resulted in 24–165
Tg of carbon committed emissions from the Brazilian Amazon throughmortality, decomposi-
tion or combustion during subsequent fires. During the 2010 drought, Anderson et al. [21] esti-
mated that old growth forest fires in the Brazilian Legal Amazon contributed 11.75–17.87 Tg
of carbon to the atmosphere. During severe droughts, forest fires and tree mortality are likely
to play a large contribution to carbon emissions from the Amazonia, potentially reversing its
current net carbon sink [4]. Wildfires also have implications for human health, livelihoods of
local populations and economies of Amazon countries [22–26].

Fire activity in Amazonia has predominantly occurred in and close to deforested areas
[27,20,11,28]. This is because current wildfire in the region is almost entirely driven by human
activity. Fire is widely used for the initial conversion of natural vegetation into agricultural and
pasture fields (‘conversion fire’), and repeated burning has been used for the subsequent main-
tenance of deforested areas (‘maintenance fire’), such as pasture renewal and maintenance
[29,11,30]. Shifts in the frequency, intensity and pattern of forest fires in Amazonia are closely
linked to the agricultural frontier and represent a shift in the fire regime compared to historical
patterns [31].

Recognising the anthropogenic and biophysical drivers of wildfire occurrence emphasizes
the need to study the fire-climate-society nexus to anticipate and manage future wildfire risk.
Future wildfire regimes will be a product of climate, land cover and land use change, and
human management practices, all of which must be factored in. Modelling wildfire risk can be
a usefulmethod to better understand these interactions and can help not only to predict future
wildfire impacts on the Amazon biome, but also to improve the design of climate change miti-
gation and adaptation strategies [3].

Within the fire research and practice community, fire risk refers to the probability of igni-
tion both man- and lightning-caused [32]. In this study, we adopted this definition, but we also
included an assessment of potential impacts linked to this probability of fire occurrence,which
is important for anticipation and adaptation planning. Because the remotely sensed data used
for modelling risk in this study–active fire detected by satellite sensors–do not distinguish
between fire for agriculture (i.e. ‘conversion fire’ or ‘maintenance fire’) and wildfire (e.g. forest
fire), we do not refer to probability of wildfire risk but instead to probability of ‘fire risk’, which
includes a mixture of forest and non-forest agricultural, accidental and natural fires.

Some studies have modelled future fire risk in Amazonia considering not only drier weather
conditions, but also different development pathways that can result in distinct deforestation
trajectories [33–36]. Fire risk models have been developed for specific areas in Amazonia at
finer resolution and using presence-absence data such as mapped burn scars [34,37], or inte-
grating fire behaviour and propagation processes into a process-based fire model [36]. Map-
ping high-resolution burn scars and obtaining data on fire behaviour for different fuel
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environments is highly time consuming, thus applying these models to larger areas represents
a challenge. In fact, the absence of data and understanding of fire dynamics in the different
types of fuel environments of Amazonia is one of the major difficulties to predict wildfire in
the region [38]. Fine-scale versions of fire risk models in this context require multiple compo-
nents on ignition and propagation and numerous parameters that need to be adapted and cali-
brated to the diverse characteristics of Amazon landscapes [36].

Instead, a simpler and perhaps more usefulmodelling approach for such a diverse and large
landscape is to adopt probabilistic modelling [35]. This technique can generate insights on fire
risk based on the interplay of different spatial patterns that represent the incomplete informa-
tion we have on the biophysical, climatic and anthropogenic factors that constrain the distribu-
tion of fire occurrence.On this basis, Silvestrini et al. [35] have recently developed a
probabilistic model that allowed covering the whole of Amazonia using available fire occur-
rence data (NOAA-12 hot pixels), yet the study applied presence-absencemodelling.

In this paper we apply maximum entropy modelling to predict probability of fire occurrence
based on presence-only datasets [39] since defining a true absence of fire with hot pixels can be
challenging whenmonitoring fire, if not undesirable [40,41]. This method, which is commonly
used for species distributionmodelling [39,42,43,44], has been applied only in very recent stud-
ies to model fire risk [45,46,41], and not yet in the context of Amazonia. Some of these models
have used only land cover and anthropogenic variables to generate fire probability maps [45].
Renard et al. [46] and Arnold et al. [41] combined a series of climatic variables with static topo-
graphic, vegetation cover or distance to roads variables, but did not consider change in land
use and land cover in their modelling task to assess how this dynamic would influence fire risk
if interacting with more extreme climatic conditions.

In this study we address this gap and aim to assess how changes in land cover, land use and
other anthropogenic variables (triggered by different development policies) interact with
changes in climate to anticipate potential fire risk at the landscape level. We do this by simulat-
ing alternative future scenarios based on past and current conditions determining fire occur-
rence. Rather than studying Brazilian Amazonia, which is the usual focus of fire research in the
Neotropics [47], we focus exclusively on a region located at the southern edge of Amazonia,
the Chiquitania of Bolivia. The following questions underpin our research:

1. What are the main spatial determinants of wildfire occurrence in the Chiquitania region?

2. How do changes in climate and development trajectories affect future wildfire risk and what
could be the potential impacts?

3. What strategies could have an inhibitory effect on wildfire risk?

The Chiquitania region is a stimulating case study in the lowlands of Bolivia to model fire
risk and its sensitivity to changing climatic conditions. On the one hand, the extensive and well
conserved seasonally dry tropical forest biome, which is a key and unique feature of this region
[48–50], is exposed to marked seasonality and hence is susceptible to changes in climate and
fire regimes. On the other hand, this region is undergoing a rapid expansion of its agricultural
frontier, which adds to the reinforcing feedbacks we would like to study.

Recent remote sensing studies usingMODIS data have estimated that an accumulated total of
9.6 million ha burnt in Bolivia due to forest fires between2000 and 2013 [51]. Most of these forest
fires (71%) occurred in the Department of Santa Cruzwhere the Chiquitania region is located.
During the 2010 drought that affected the region (S1 Fig) raging wildfires burned about 2 million
ha of forests across the Department of Santa Cruz, leading to a national state of emergency [51].

Risk of wildfiresmay increase in the future as the Chiquitania region faces drier and more
seasonally extreme climatic conditions, associated to different climate modes such as El Niño–
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SouthernOscillation, the Pacific DecadalOscillation [18,52], and tropical Atlantic STT anoma-
lies related to the Atlantic Multidecadal Oscillation [1,6]. Using a regional climate model (PRE-
CIS ECHAM4 results under the SRES A2 high-end emissions scenario), Seiler [53] assessed
that temperature in the Bolivian lowlands (i.e. areas below 500 mamsl) can be expected to
increase by about 1.3°C by 2030 and 4.7°C by 2100. The projections also showed that seasonal-
ity might intensify, with increased rainfall during the rainy season (DJF months) and less pre-
cipitation during the dry season (JASO months). Based on global circulationmodels (CMIP5
RCP8.5), Seiler et al. [54] assessed a projected increase in temperature of 2.5–5.9°C for Bolivia
by the period 2070–99. Most projections for the Bolivian lowlands showed significant decrease
in annual accumulated rainfall, with less precipitation during the drier months from July to
November, and significant change in inter-annual rainfall variability [54].

Changes in the region are also driven by policies fostering frontier expansion and immigra-
tion, both of which are spreading the use of fire. Since mid-2000s a wave of migration driven
by post-neoliberalismpolicies is supporting the settlement of new farming communities [55].
This combines with recent national plans to expand the agricultural frontier and the road net-
work in the region [56,57] based on socio-economicdevelopment priorities, food security and
sovereignty (e.g. Law N337 [58], Law N650 [59]). In 2015, discussions between the national
government and the agro-industry sector led to a national target to expand the agricultural
frontier to 13 million ha by 2025 [60–62]. By 2010 about 4.6 million ha were deforested in the
Bolivian lowlands [63], which means that the new national target would require expanding the
frontier by almost 10 million ha in the next decade; an action that will undoubtedly further
spread the use of fire into new forest frontiers.

Study Area Description
The Chiquitania region is located in the Department of Santa Cruz, Bolivia. This case study
region is part of the Chiquitano dry forest ecoregion that spreads over Bolivia, Brazil and Para-
guay linking the Amazon rainforests to the north with the Gran Chaco shrublands to the south
[48]. To promote conservation and sustainable development in the Bolivian lowlands, the Chi-
quitania was recognised as a ‘Model Forest’ in 2005 [64,65] (Fig 1). The ChiquitanoModel For-
est (CMF) covers a bit more than 200 thousand km2 where the predominant natural vegetation
is tropical dry forest with semi-deciduous trees, intertwinedwith grasslands and shrubbery of
the woody savanna cerrado [66,48,49]. By 2010, about 54% of the Chiquitania was covered by
seasonally dry tropical forest, and about 80% of the territory was used for cattle ranching
including mixed agricultural use and forested rangeland [67]. Land tenure in the Chiquitania
region is concentrated in the livestock sector, which together with the forestry sector contrib-
utes to about 90% of the regional economy [48].

The seasonally dry tropical forests in the Chiquitania grow on relatively fertile soils. Under-
story presence of C4 grasses in these closed canopy forests is infrequent and natural fire is rare
[68,49,50]. On the contrary, fire in the grasslands of the savanna cerrado is more common.
Because dry forests and grasslands occur as mosaics, it is necessary to consider their inter-con-
nections at the landscape level [50].

The regional climate is characterised by a marked dry season from July through November.
Mean annual precipitation in the central area of the region is 1129 mm varying between 500
and 1710 mm between years [66]. Based on NASA TRMM data for the region (2000–2013) an
average of 6 months a year (starting in April/May) receive<100 mm, with the driest months
being July and August (around 20±3 mmmonth-1). Temperature varies little throughout the
year with daily means of 24–25°C. Northern winds are common throughout the year and
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oscillate between 3.7 and 18.5 km h-1. Although less frequent, southern winds during the dry
season are more intense, dry and cold, and can affect the spread of fires.

There is a long history of fire use in the traditional production systems of the Chiquitania
[71,72]. Wildfires are recognised as part of the disturbance regime of the region, however in
recent years they have becomemore dominant and difficult to manage. Wildfires are mainly
anthropogenic and closely related to human activities such as slash-and-burn agriculture, pas-
ture management, waste burning, hunting, and others [72,30].

Materials

Modelling approach
We usedmaximum entropy (MaxEnt) modelling to predict fire risk and simulate future sce-
narios. MaxEnt is a general-purposemethod that uses statistics and machine learning to make

Fig 1. Our case study the Chiquitania region in the Departmentof Santa Cruz, Bolivia. Area is delimited by
the boundaries of the ChiquitanoModel Forest [69]. Themap shows the deforestation pattern in the region from
2000 to 2010 according to data generated by FAN [70].

doi:10.1371/journal.pone.0161323.g001
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predictions or inferences from incomplete information, suitable for all existing applications
involving presence-only datasets [39]. MaxEnt estimates a target probability distribution by
finding the probability distribution of maximum entropy (i.e. that is most spread out) subjected
to a set of constraints that represent our incomplete information about the target distribution.
This information is contained in a set of spatial variables and functions thereof (i.e. environ-
mental features) that characterise the environment of the study area and not only the condi-
tions at presence sites. The sample points used as presence data in the model were localities
where fire was observed (i.e. MODIS-detected hotspots). The model predicts suitability for fire
occurrence as a function of the environmental features, where “the expected value of each fea-
ture should match its empirical average” ([39], p.234). In other words, the model output indi-
cates the areas that satisfy the conditions for fire occurrence based on constraints defined by
the environmental features informing the model. In this sense, this model builds on what is
known, but carefully avoids anything that is unknown [39].

Our model resolution was 1 km to keep consistency with the 1 km2 MODIS footprint to
detect fires used as sample points (presence data) in the model. This also helped to minimize
potential geo-location biases of fires. It was also a relevant resolution given the geographic scale
and grain needed for the modelling task, particularly as we combined climatic variables that
are more suitable for meso-scalemodels with land cover and land use variables that have more
effect at a micro-scale.

Maximum entropy modelling offers certain advantages to model fire risk over more tradi-
tional presence-absencemodellingmethods.With MaxEnt, background values in the environ-
ment where fire has not been observed are not treated as absences during the modelling task,
instead used as constraints on the unknown probability distribution. This makes this method
more appropriate for using active fire detection products such as MODIS hotspots where true
absence is difficult to define (i.e. fires can occur that are undetected by MODIS). It also helps in
cases where sample points are scarce and distributed over a large geographical area (not the
case in this study). Moreover, the model output of relative probability of presence generated
with MaxEnt is continuous, which allows making a finer distinction between the levels of fire
risk in different areas. This is more useful to informmanagement decisions (See S1 File, also
for some limitations of the method).

Model variables
Different variables with temporal and spatial correspondencewere processed to build a maxi-
mum entropy model of fire risk for the CMF region. Variables included environmental, socio-
economic and climate-related features relevant to fire occurrence in the period 2000–2010.
This periodwas selected because the data quality and availability were suitable for model input,
while datasets for years prior to 2000 were not always complete. The period also captured
important changes that have lately affected the region, which were necessary to consider in
model development to simulate scenarios that assume these changes intensify in the future. S1
Table shows all the variables processed and tested individually and in different combinations
to build models of fire risk. Table 1 lists the most significant variables selected to obtain more
parsimonious models (Maps in S2 and S3 Figs). Dynamic variables that were manipulated in
the scenario simulations are highlighted in Table 1 and include deforestation, roads, protected
areas, and climate-related variables (Seemore detailed assumptions for changes in these vari-
ables in the section ‘Future scenarios’). Data for variables used as model inputs were obtained
with permission of local research organisations signingMemoranda of Understanding. Other
spatial data were publicly available and no specific permissions were required. All sources are
included in the References and indicated in Table 1 and S1 Table.
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Recent studies found that protected areas (PAs) can limit the spread of forest fires in other
regions of the Amazonia [73,74,35]. Despite this variable had only minor contribution to over-
all model performance, we decided to include it in order to test if the establishment of new PAs
in strategic locations would help inhibit fire risk. In Bolivia PAs have different designation and
can be managed at different scales, from the national (PA) level to the departmental (DPA)
and the municipal (MPA) levels, with associated implications for activities allowed within their
boundaries, and resources and capacity to monitor the areas. Besides PAs, in the 1990s the
Bolivian state also recognised indigenous land. Since 2011 these areas are referred to as Terri-
torio Indigena Originario Campesino (TIOC) and currently most are consolidated with land
title [56]. In the lowlands of Bolivia, the TIOCs occupy large areas and include primary forests
in locations of less road connectivity. Because of this, they have an important role to play in for-
est conservation if managed sustainably [75]. For this reason, in this study we included both
TIOCs and PAs.

We usedMODIS-detectedAqua and Terra MCD14ML high-confidence (>80%) hotspots
as sample points for the model. First we analysed hotspots for the period 2001–2013 (only
Terra in 2001) to gain a broad understanding of the spatial and temporal distribution of fire
occurrence in the region.We then calibrated the model using 2001–2010 hotspots for the
region to ensure temporal correspondence with the environmental features.

MODIS can routinely detect both flaming and smouldering fires around 1 km2 in size.
Under very good observing conditions even smaller flaming fires of about 50 m2 can be
detected [82]. Hotspots are recorded when one or more fires (�227°C) are identifiedwithin
the 1 km2 footprint. Because active fire detection by MODIS does not distinguish between

Table 1. Selected variables for fire riskmodelling.

Variable Description Original
resolution§

Post-processing
unit

Source

Chiquitano
shrubland

Land cover category important for fire occurrence obtained from the 2010
land cover and use map of Bolivia

50 m % UTNIT [67]

Grassland Land cover category important for fire occurrence obtained from the 2010
land cover and use map of Bolivia

50 m % UTNIT [67]

Deforestation# Deforestation between 2000 and 2010 estimated from the map of
deforestation to 2000, 2005 and 2010 for the lowlands of Bolivia

30 m % FAN [70]

Roads# Euclidean distance to roads weighted by paved and unpaved roads to 2008 n/a m FCBC [69], ABC
[76]

Population
density

Kernel density of human settlementsweighted by the population of each
Municipality area within the CMF region

n/a nw‡ km-2 FCBC [69], INE
[77]

Protected areas# Different categories of protected areas and indigenous land n/a cat SERNAP [78],
FCBC [69]

Temperature# Annual anomalies of mean temperature (2000–2010 baseline) using monthly
land surface temperature data fromMODIS Terra MOD11C3

0.05° kelvin† NASA USGS [79]

Precipitation# Annual anomalies of MCWD (2000–2010 baseline) based on monthly rainfall
data from the Tropical Rainfall MeasuringMission

0.25° mm NASA TRMM
[80]

Hotspots MODIS Aqua and Terra MCD14MLhigh-confidence hotspots for the period
2001–2010 (version 5.1)

1 km count km-2 NASA FIRMS
[81]

MCWD:maximum climatological water deficit calculated applying a threshold of 100 mm to the dataset (See S2 File for details)

§ Post-processing resolution for all variables is 1 km

# Variables manipulated in future scenario simulations

‡ Number (n) of human settlementsweighted (w) by population

† Multiplying by a scale factor of 0.02

doi:10.1371/journal.pone.0161323.t001
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different fire types, MCD14ML hotspots provide a proxy for the occurrence of biomass burn-
ing events that may be associated to conversion fire, maintenance fire and wildfire [83].

We acknowledge that the MCD14ML hotspots present biases in active fire detection due to
factors such as: fire that started and ended between satellite overpasses, fires that are too small
or cool to be detected by the footprint, cloud cover, heavy smoke, or tree canopy that may
completely obscure fires such as small understory fires [82,84]. However, we decided to use
MODIS hotspots for this modelling task based on the following careful considerations. First, in
other studies small-size burned scars have shown to have little contribution to overall burned
area detectedwith MODIS [85,84]. Second, despite the Landsat multispectral data has proved
suitable to map burn scars [86,31,84], the lower temporal resolution of Landsat combined with
high cloud cover makes this sensor less ideal and more time intensive to map burn scars over
large spatial and temporal scales.

Third, a validation implemented in Amazonia showed that only 13% of a 1 km2 MODIS
hotspot needs to be occupied by an active fire to achieve high detection confidence, denoting
the accuracy of the MODIS fire algorithm [87]. Fourth, the omission error by MODIS fire
detection is less problematic when usingMaxEnt because the model uses presence only data.
This means that even with omission errors (e.g. missing small understory fires), the high confi-
denceMCD14ML hotspots are appropriate to train the model because these locations–where
we have more certainty that fire has occurred–will serve to identify other areas in the region
with similar environmental characteristics suitable for fire occurrence.Commission errors, on
the other hand, are more problematic because they could lead to false alarm with high fire risk
in areas where fire has not occurred. This is indeed a limitation, however it is likely to be mini-
mized as commission errors occur only under the following circumstances: (i) sensor satura-
tion from a high-heat fire duplicating the hotspot in line, yet would have minimal influence on
the result due to the spatial scale we covered; (ii) large temperature difference between land
cover types (e.g. boundary of forest and bare soil), although these forests would be more sus-
ceptible to fire so it would not entail a conceptual error in terms of spatial location of the fire
probability; and (iii) targets with high temperature (e.g. rocks, sandy soils), however these hot
pixels are sparse and would have minimal influence on the results due to the spatial scale.

Fifth, the dataset we used presents significant advantages such as global coverage, high tem-
poral resolution and time accuracy, which makes it a convenient, systematic, and reliable data-
set to use for input in modelling that can be replicated elsewhere. Note we chose a long-
running dataset that provides one systemic observation of fire patterns over large temporal and
spatial scales and avoided using multiple datasets from different satellite sensors, which largely
detect different fires and are not necessarily complementary [88]. Finally, it is also important to
recognise that the government agencies in Bolivia are already using remotely sensed hotspots
in their fire monitoring activities. This model could therefore complement their work, and be
used to enhance their capacity to anticipate fire risk.

Methods

Data processing and selection
Each variable used for the fire risk model was processed and converted to 1 km resolution
using a combination of different tools as described in detail in S2 File. First we ran the MaxEnt
model with each variable on an individual basis to assess their importance. Then we applied a
factorial approach where we grouped the variables into development, environment, and cli-
mate-related variables. Next, we tested all variables together, and at each run we removed the
variables that were not contributing significantly to model gain following the principle of parsi-
mony. For the analyses above we used the jackknife test, the response curves of each variable,
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and their percent contribution and permutation importance [89]. By the end of this process,
we had selected significant variables and eliminated variables or predictors that were highly
correlated and included information that was already contained in other variables (i.e. avoiding
collinearity between predictors). Selected variables used in the more parsimonious fire risk
model are listed in Table 1.

Model testing, calibration and validation
Model goodness-of-fit was tested and compared using the Area Under Curve (AUC) score.
The AUC score was calculated using the threshold-independent receiver operating characteris-
tic (ROC) analysis adapted to presence-only modelling [39]. The AUC score reflects the ability
of the model to distinguish presence from random background where an AUC of 0.5 means
that the model does not better than random. In addition, for each model run (500 iterations),
we set aside 25% of the sample records for testing (validation) using a random seed each time.
The test AUC scores were also estimated to compare. Model outputs that showed higher false
alarm were penalised, i.e. preference was given to more conservativemodels on the premise
that risk maps should encourage intervention only when there is true high probability of fire
occurrence.

The best-performingmodel (referred to as ‘model 2010’ hereafter) with highest AUC score
was calibrated with hotspots corresponding to the period 2001–2010, equivalent to 88,883 data
points. This model was also calibrated using maximum climatological water deficit (MCWD,
see S2 File) and temperature anomalies for the dry year 2010. We decided to calibrate the
model to 2010 climatic conditions to encompass a higher range of variability, which was pre-
ferred so that we could subsequently run future scenario simulations considering extreme dry
conditions (i.e. as an analogue to seasonality becomingmore intense due to climate change).
Other model settings included 0.5 default prevalence, and a regularizationmultiplier set to 1,
which allowed reducing model over-fitting while avoiding to estimate a distribution that is so
spread out that could lead to false alarm.

The ‘model 2010’ was then used to generate a projection for 2009 using the MCWD and
temperature anomalies for 2009. We selected the year 2009 because it was considered a nor-
mal/wet year (see S1 Fig) and therefore an appropriate case to test the model performance in
validation.Model validation using the 2009 projection was conducted estimating threshold-
independent specificity [39]. For this we assessed the distribution of observedhotspots in the
projected year, equivalent to 3,991 data points, falling in each probability threshold of the pro-
jection output generated by the model. An additional cross-validation was implemented with
the 2009 projection. This entailed replicating the model run 10 times (500 iterations each) and
randomly splitting the presence data into a number of equal-sized groups. Models were run
leaving out each group in turn. Projection outputs were compared and the average output was
used in the impact analysis explained in the following sections.

Future scenarios
We built three future scenarios considering different possible development trajectories in the
Chiquitania region, mainly based on national development and land use policies (Table 2,
Maps in S4 Fig). Most development policies for the country envision concrete goals for 2025
[59]. Consequently we considered this time horizon to be politically relevant to generate sce-
narios that can inform decisions. Each 2025 scenario was run under the conditions of a nor-
mal/wet year (2009 MCWD and temperature anomalies) and under the conditions of a
drought year (2010 MCWD and temperature anomalies) as analogy of what could happen
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under future drier conditions due to climate change. Scenario simulations were replicated 10
times (500 iterations each) and average outputs were used in subsequent analyses.

The sustainability scenarioA assumed implementation of new conservation policies like
the new Environmental and Mother Earth laws and plans for integrated forest and land man-
agement under the Joint Mechanism introduced by the Bolivian government in 2012 (Law
N300 [90], DecreeN1696 [91]). This scenario was the only one to consider a regional wildfire
risk management strategy. Under this scenario, we assumed a slower socio-economicgrowth,
and the establishment of additional PAs and TIOCs.We focused on the establishment of new
DPAs in areas of high fire risk, because this category showed the smallest relationship with fire
occurrence in the model (S5 Fig). We assumed that locating newDPAs in areas of high fire risk
could be a potential measure for fire risk management, also given the increasedmonitoring
activities in these areas. Finally, more intensive agriculture and livestock production systems
are encouraged in this scenario instead of accelerating the expansion of the agricultural
frontier.

The business as usual scenarioB assumes current 2000–2010 developmental trends con-
tinue. Deforestation is led mainly by cattle ranching and mechanised agriculture, and also due
to the immigration of new settlers in the region. The paved road network is expanded, although
it does not fulfil national projections due to relatively moderate economic growth. Some new
MPAs and TIOCs are established, but not DPAs.

Under the rapid growth scenarioC, a series of economic policies implemented in the
region accelerate the expansion of the agricultural frontier and boost the country’s socio-eco-
nomic growth. The agreement between the national government and the production sectors is
implemented, expanding the agricultural frontier to 13 million ha in the lowlands of Bolivia
[62]. The paved road network is developed according to national projections. The economy
grows fast but is not diversified, basedmainly on extractive activities such as agriculture, live-
stock and mining even in protected areas. New protected areas and fire risk management are
not envisaged.

Table 2. Brief scenario descriptions and assumptions.

Sustainable growth (ScenarioA) Business as usual (Scenario B) Rapid growth (Scenario C)

Assumptions and
change in
variables†

• Implementation of new conservation
policies.
• MoreMunicipal PAs and TIOCs, new
Departmental PAs are established in
areas of high fire risk with low land tenure
by 2009.
• Current road network is maintained.
• Intensive systems are encouraged
instead of rapid frontier expansion,
deforestation rate decreases after 2013.

• The economic and deforestation trends of
2000–2010 continue.
• The paved road network is moderately
expanded.
• MoreMunicipal PAs and TIOCs, no new
Departmental PAs are established.
• Regional wildfire risk management strategies
are not envisaged.

• Economic policies lead to the
expansion of the agricultural frontier to
reach national target of 13 million ha in
2025.
• The paved road network is expanded
according to national projections.
• New protected areas and wildfire risk
management are not envisaged.

Assumption
sources

Deforestation: 2025 deforestation maps
for the Bolivian lowlands under scenario
A by Tejada et al. [62] (AmazAlert
project).
• PAs and TIOCs: SERNAP [78], FCBC
[69], and authors’ assumption.

• Roads: 2020 projection by the ABC [76].
Deforestation: 2025 deforestation maps for the
Bolivian lowlands under scenario B by Tejada
et al. [62] (AmazAlertproject).
• PAs and TIOCs: SERNAP [78], FCBC [69].

• Roads: 2020 projection by the ABC
[76].
• Deforestation: 2025 deforestation
maps for the Bolivian lowlands under
scenarioC by Tejada et al. [62]
(AmazAlert project).

PAs: protected areas, TIOCs: indigenous land (Territorio IndigenaOriginarioCampesino), SERNAP: National Service of Protected Areas (ServicioNacional
de Áreas Protegidas), FCBC: Fundación para la Conservación del BosqueChiquitano, ABC: Bolivian Road Administration (Administradora Boliviana de
Carreteras).
† All other variables in the simulations were maintained unchanged. S4 Fig presents the maps showing the change in dynamic variables.

doi:10.1371/journal.pone.0161323.t002
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Analysis of potential impact
Potential impacts caused by fire were assessed in terms of forest biomass loss and socio-eco-
nomic implications. This analysis was conducted for all scenarios. To compare potential
impacts of different model outputs we focused on areas of high fire risk.We defined these areas
as cells with probability values>0.5 in the fire risk maps, grouping the last two classes of risk
suggested by Ferrarini [40] to interpret outputs generated with MaxEnt for fire modelling:
0–0.25 low risk, 0.25–0.5 moderate risk, 0.5–0.75 high risk, and 0.75–1 extreme risk. We
acknowledge that this analysis may over-estimate area at risk because it assumes that the whole
pixel is at risk to be burned, when in fact MODIS hotspots used in the model only provide
information on location of fire occurrence and not area. However, given that MCD14ML is
known to under-estimate fire occurrence (particularly understory fire) this might be compen-
sated to some extent. Also, we note that recent studies [21] have shown there is good agreement
betweenMODIS hotspots and burned area, demonstrating the potential capability of using
active fire information to estimate burned area and biomass loss over large areas.

To estimate a potential envelop of biomass loss and consider uncertainty, we used above-
ground biomass (AGB) datasets developed by three studies: (i) Yu et al. (Unpublished data)
building on the Saatchi et al. [92] dataset, (ii) Baccini et al. [93], and (iii) Mitchard et al. [94].
The first two datasets are based on remote sensing data, while the last one is based on a geosta-
tistical model of field data for Amazonia. By using multiple datasets we captured a systemic
error in the AGB estimates, which is more conservative than the estimated error produced by
the method employed in each study. With each dataset, mean AGB was calculated for each
probability threshold of the fire risk maps generated with the model. An average AGB based on
the three datasets was then calculated for each probability threshold. Loss of AGB due to fire
was estimated using the following equation:

Bl ¼ ð1 � aÞBi ð1Þ

where Bl is the potential aboveground biomass loss (Mg ha-1) after fire, Bi is the initial above-
ground biomass (Mg ha-1), and α is the proportion of AGB remaining post-fire ranging from
0.7084 [21] to 0.90 [95]. The range of potential AGB loss estimated with Eq (1) accounts for
biomass loss between 1 and 5 years after fire occurrence,without accounting for fire recurrence.
More details are provided in S3 File.

Finally, potential socio-economic implications of the fire risk maps were estimated using
the current land use and land cover (LUC) map for Bolivia updated to 2010 [67], and the Land
Use Plan (PLUS) map for the Department of Santa Cruz updated to 2009 and processed for the
CMF region (S2 Table). Using zonal statistics, the mean probability of fire occurrencewas esti-
mated for (i) each category of the LUC map, to assess the differences between a wet and a dry
year, and (ii) each category of the PLUS map, to assess the differences between the scenarios
with and without the effects of climate change (i.e. severely dry conditions).

Results

Observed distribution of fires
Fires usually occurred during the dry season due to a combination of favourable conditions
such as dry biomass, weather and land management practices. The months of August and Sep-
tember were identified as peak fire months based on the total number of high-confidencehot-
spots counted per month during the period 2001–2013 (Fig 2). About 83% of fires occurred
between these two months and 93% betweenAugust and October (Fig 2B), with considerable
inter-annual variability. Although peakmonths are well distributed across the region, the
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northern part of the region showed a larger number of hotspots in September (Fig 2A). This
indicated that this area, which is covered by more humid Amazon forests, required longer time
to show the flammability conditions necessary for forest fire outbreaks to occur.

Model performance
The development, environment, and climate-related variables had different importance for
model gain. The factorial analysis showed that when the 2010 hotspots were excluded, the
models with only development variables (i.e. land use and land cover, roads and deforestation)
showed the highest AUC scores (0.706). In general, 2009 climate-related variables showed less

Fig 2. Peak months of hotspotoccurrence in the ChiquitanoModel Forest, Department of Santa Cruz,
Bolivia. (a) MODISMCD14MLhigh-confidence hotspots are coloured according to the month with the highest
number of hotspots during the period 2001–2013. (b) Histogram showing total number of MCD14MLhigh-
confidence hotspots per month in the period 2001–2013 for the ChiquitanoModel Forest region. In the modelling
task we excluded hotspots in 2011–2013 to maintain temporal correspondencewith the environmental variables
used in themodel.

doi:10.1371/journal.pone.0161323.g002
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contribution to model gain. When including 2010 hotspots in the model, 2010 climate-related
variables becamemore important for model gain (AUC score 0.704). This indicated that cli-
matic variables becomemore important drivers of fire occurrence in extremely dry years such
as 2010.

The best-performingparsimonious model calibrated with 2001–2010 hotspots (i.e. ‘model
2010’) generated an AUC of 0.70. This is comparable to other fire risk models developedwith
MaxEnt, which obtained similar performance results with an AUC of 0.72 [45] and 0.88 [46].
The contributions of the variables included in the ‘model 2010’ were: Chiquitano shrubland
(27.7%), road network weighted by paved and unpaved roads (22.7%), deforestation between
2000 and 2010 (17.1%), density of human settlements weighted by population in eachMunici-
pality (15.8%), mean temperature anomalies (6.7%), grasslands (4.6%), maximum climatologi-
cal water deficit (MCWD) anomalies (3.3%), and protected areas and indigenous land (2.2%)
(See jackknife test in S6 Fig). The protected areas variable was kept in the final model despite
its low contribution to model gain because we wanted to assess the effect of establishing pro-
tected areas in strategic locations to inhibit future fire risk.

Modelling fire risk in dry and wet years
The area with high fire risk (>0.5 probability) under dry climatic conditions (2010 MCWD
and temperature anomalies) was 69% larger than in the projection output for the normal/wet
year 2009. About 56,700 km2 were at high fire risk in the 2010 model compared to 33,500 km2

in the 2009 projection (Fig 3A and 3B). This was most likely driven by the difference in mean
temperature anomalies between 2009 and 2010 (See S3 Fig). In a dry year, the model captured
the higher risk of fire occurrence in the northern area of the region, which is covered by more
humid Amazonian forests that are generally less prone to fire (Fig 3C). Validation of the 2009
projection conducted using 2009 MCD14ML hotspots (Fig 3D) showed high sensitivity with
almost 60% of total observedhotspots that year falling above the 0.5 probability threshold (S7
Fig).

Scenarios of fire risk for 2025
Simulations for 2025 were based on different development trajectories in the Chiquitania.
Comparing simulation results (Fig 4), the area of high fire risk (>0.5 probability) was 20% less
in the sustainability scenario A (77,600 km2) than in the rapid growth scenario C (92,500 km2).
ScenarioA showed a partial decrease in fire risk where newDPAs were established (Fig 4A).
Road network development and deforestation increased area at high fire risk (>0.5 probability)
by 1.5 times in future scenario B and by 1.8 times in scenario C compared to the 2009 projec-
tion. A combination of land use change and dry climatic conditions increased the area at high
fire risk by 1.2 times comparing scenario C (Fig 4B with CC, equivalent to about 122,800 km2)
with a current dry year (model 2010 output) and by 2.6 times with a current wet year (2009
projection).

Potential fire impacts on biomass
Although the three datasets used to estimate potential AGB loss generated different estimates,
they followed a similar pattern showing an envelope of uncertainty (Fig 5A and 5B) with mean
loss factor 0.195 (±0.096) based on Eq (1). This pattern showed that in both wet and dry years
the higher mean AGB values were in the lower risk probability ranges, and that in general land
cover with lower mean AGB values, such as grasslands and pastures for example, were at higher
risk of fire (Fig 5A and 5B). Accounting only for high fire risk area (>0.5 probability), potential
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mean AGB loss in the model 2010 output (0.88±0.3 Tg) was 85% higher than in the 2009 pro-
jection output (0.47±0.2 Tg) (Fig 5C and 5D).

As expected, the potential AGB loss was higher in scenarios B and C than in scenario A. The
rapid growth scenario C showed particularly high biomass loss in the probability range 0.5–0.7
(Fig 6). Considering only high fire risk area (> 0.5 probability), potential AGB loss in the sce-
nario C (1.71±0.6 Tg) was 28% higher than in scenario A (1.33±0.5 Tg). Under drier climatic
conditions, the potential AGB loss in high fire risk area increased even further with a loss of
2.00±0.6 Tg in scenario A and of 2.44±0.8 Tg in scenario C. The extreme scenario C under cli-
mate change had a potential AGB loss 1.8 times higher than the model 2010 output.

Potential fire impacts on livelihoods
The largest land use and land cover (LUC) categories in the region were ‘dense sub-humid Chi-
quitano forest’ (116,300 km2) and ‘Chiquitano shrubland on semi-arid plain’ (44,700 km2).
These categories were also potentially the most affected by fires in terms of area under risk.

Fig 3. Histograms show the frequency distribution of 1 km resolution cells (area in km2) across the different
probability thresholds of fire occurrence in (a) themodel 2010 output using 2010 temperature andMCWD
anomalies, (b) the 2009 projection of using 2009 temperature andMCWDanomalies. Maps show the fire risk
based on the same probability threshold values for (c) themodel 2010 output and (d) the 2009 projection overlaid
by 2009MCD14MLhotspots for validation.

doi:10.1371/journal.pone.0161323.g003
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Focusing only on high fire risk (>0.5 probability), the area in the first category was 2 times
larger in the model 2010 output (20,400 km2) than in the 2009 projection, and 45% larger in
the second category with 25,600 km2 in the dry year. Dry conditions increased the mean proba-
bility of fire occurrence particularly in cleared areas with different types of land used for mixed
agriculture (i.e. agriculture and cattle ranching), as well as in grasslands and the forest of the
Chaco on semi-arid plain (Fig 7).

Across all scenarios, the two categories of the Land Use Plan (PLUS) with potentially most
affected area by fires were ‘extensive cattle ranching’ and ‘forest use and regulated cattle ranch-
ing’. The most noticeable differences between scenario A and scenario C were in the ‘perma-
nent forest production’ and ‘departmental protected area’ categories of the PLUS. In the
scenario C, the area of high fire risk (>0.5 probability) doubled in the former category with
1,007 km2 and increased by 59% in the latter with 2,003 km2. Considering interactions with

Fig 4. Simulations of fire risk using themodel 2010 for (a) sustainability scenario A without climate change (CC) and with CC and (b) rapid growth scenarioC
without CC and with CC. To help visualisation, we coloured high fire risk area (>0.5 probability) red in the map. (c) Histograms show the frequency distribution
of 1 km resolution cells (area in km2) across the different probability thresholds of fire risk in scenarios A and B without CC (top) and under drier climatic
conditions (below).

doi:10.1371/journal.pone.0161323.g004
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climate change, area at high fire risk more than doubled in the scenario C in the categories ‘for-
est use and regulated cattle ranching’ (37,400 km2), ‘permanent forest production’ (1,300 km2),
and ‘intensive cattle ranching and agriculture’ (3,900 km2), increased by 89% in the category
‘departmental protected area’ (2,400 km2) and by 66% in the category ‘national protected area’
(24,400 km2) compared to scenario A without climate change. In general, comparisons
between scenarios B and C showed less difference in high fire risk area in the ‘departmental
protected area’ category. Hence, establishing new DPAs in the scenario A helped reduce fire
risk in this PLUS category, even under severely dry conditions.

The largest PLUS categories in the region were ‘forest use and regulated cattle ranching’
(60,500 km2) and the ‘national protected area’ (57,800 km2). These two categories showed the
highest increase in mean probability of fire occurrence under the rapid growth scenario C (Fig
8). When considering also climate change the mean probability of fire occurrence increased
across all scenarios.Mean probability values of fire occurrence reached about 0.6 in the catego-
ries ‘extensive cattle ranching’, ‘agro-silvopastoral use’ and ‘intensive cattle ranching and agri-
culture’ (Fig 8). These three categories are associated to cleared land with a mixture of pastures,

Fig 5. Curves showmean aboveground biomass estimatedusing three different datasets and their average
for each probability threshold of fire risk for (a) the 2009 projection using 2009 temperature andMCWD
anomalies and (b) the model 2010 output using 2010 temperature andMCWDanomalies. Bars show
potential biomass loss for each probability threshold estimated averaging Yu et al. building on Saatchi et al.
[92], Baccini et al. [93] andMitchard et al. [94] datasets for the region and using Eq (1) for (c) the 2009
projection and (d) the model 2010 output. Error bars correspond to the range of AGB loss proportion
considered in Eq (1).

doi:10.1371/journal.pone.0161323.g005
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fallow, and agriculture. Despite synergies between severely dry conditions and rapid frontier
expansion increased the fire risk in categories ‘departmental protected area’ and ‘permanent
forest production’, the mean probability of fire occurrence in these two categories remained
relatively low compared to the other PLUS categories.

Fig 6. Mean potential aboveground biomass loss for each probability threshold of fire risk under the three scenarios (a)
without climate change and (b) with climate change (using 2010 temperature andMCWDanomalies). Aboveground
biomass was estimatedaveraging Yu et al. building on Saatchi et al. [92], Baccini et al. [93] andMitchard et al. [94]
datasets for the region and using Eq (1). Mean values need to be multiplied by ±0.096 to account for uncertainty in the
range of AGB loss considered in Eq (1).

doi:10.1371/journal.pone.0161323.g006

Fig 7. Bars show the total area covered by each category of the 2010 land use and land cover (LUC)
map for the Chiquitania region, ranked by decreasing area.Points show themean probability (±STD) of
fire risk in different LUC categories for themodel 2010 output and 2009 projection.

doi:10.1371/journal.pone.0161323.g007
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Discussion

Determinantsof fire risk in the Chiquitania
We found that important determinants of fire risk are distance to roads, recent deforestation
and density of human settlements. Other studies have also identified that forest fires are associ-
ated with road development and forest fragmentation, with the probability of fire decreasing as
distance to roads and clearings increases [27,33,34,35,96]. This can partly be explained by fire
escape from pastures or croplands that are being burned, but also as a result of drier conditions
in forest edges [9]. Silvestrini et al. [35] found that forests located within 8 km of roads are
highly vulnerable to fire in Amazonia, while Rodriguez-Montellano [51] estimated that 66% of
forest fires in Bolivia occur within 1 km distance from deforested land.

In our model the dense network of secondary or unpaved roads was a better explanatory
variable for fire risk than the paved roads. Although this is contrary to what was found by
Gutiérrez-Vélez et al. [37], it corresponds to the local reality of the Chiquitania region where
paved roads covered only 9% of the entire road network at the time of the study. Most of the
local communities and properties were located along or close to unpaved secondary roads. We
expect that the construction of more planned paved roads in the future will inevitably lead to
more secondary roads, although we did not incorporate this effect in the simulations.

In our study recent deforestation (2000–2010) was more significant for fire risk prediction
than consolidated deforestation (accumulated to 2000). This denoted strong connections
between fire and burning for the conversion of forests to agricultural land. This was similar to
results by Lima et al. [31] that showed a significant spatial association between recent defores-
tation and the occurrence of fires. Although in their study correlation between old deforesta-
tion and burn scars was low, they found a high number of burn scars in areas of old

Fig 8. Mean probability of fire occurrence estimated for different categoriesof the Land Use Plan (PLUS) in
the region for each simulation scenarioA, B, and C, and considering climate change (cc). The area covered
by the PLUS categories increases clockwise starting from the top of the radar.

doi:10.1371/journal.pone.0161323.g008
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deforestation. In our study, old deforestation was removed from the model due to its low con-
tribution to model gain, although it is important to note that we also found several hotspots in
old deforestation areas. Aragão and Shimabukuro [11] showed that fire activity in Amazonia
can be high where the rate of deforestation is lower because of burning to renew existing pas-
ture areas (i.e. removing weeds and pests and promoting regeneration) or to clear vegetation
regrowth for new pastures. Overall, the importance of recent deforestation to predict fire risk
in our model is concerning, particularly when pondering future trajectories of rapid agricul-
tural expansion encouraged by national policies.

Outmigration and emptying of rural landscapes was identified as an additional factor affect-
ing fire frequency at a province-scale study conducted by Uriarte et al. [96] in western Amazo-
nia. In the Chiquitania region, the density of human settlements was found to be an important
factor contributing to fire risk. Contrary to the case study by Uriarte et al. [96], in the Chiquita-
nia the new wave of immigration is increasing the rural population and expanding agricultural
practices and fire use. Because fire is a cheap, labour-saving way of clearing and managing
land, it is the technique adopted by most of the new farmers and cattle ranchers settling in the
region, even if they do not use fire traditionally in their locations of origin. No prior traditional
knowledge of fire use also represents an additional risk factor for accidental wildfires.

Future fire risk and potential impacts
Our simulations showed that severely dry conditions increased the risk of fire in the Chiquita-
nia region across all types of land use and land cover. Results also showed that the interactions
between dry climatic conditions and rapid frontier expansion can further increase fire risk with
potential negative implications in terms of carbon loss and livelihoods.A rapid growth scenario
C with climate change presented an important potential biomass loss of 2.44±0.8 Tg in areas of
high fire risk (>0.5 probability), which was 1.8 times higher than the estimates for the 2010
drought.

In addition, cleared areas used for agriculture and cattle ranching showed the highest mean
probability of fire occurrence,which increased even further under drought conditions. These
results have serious implications because they indicate that the three main subsistence and eco-
nomic activities in the Chiquitania, i.e. the forestry, livestock, and agriculture sectors, are the
most vulnerable to fire. Recent studies in western Amazonia [96,37] also found that drought
severity significantly increases the risk of fire in cleared lands predominantly covered by agri-
culture and pastures.

Most of the agricultural production in the Chiquitania region is based on extensive produc-
tion systems, which (i) depend on large pastures that according to Uhl and Kauffman [97] are
the most flammable land cover susceptible to fire throughout most of the dry season, and (ii)
are intertwinedwith secondary forests and fallow, which becomemore flammable with
drought severity [37]. High mean probabilities (reaching up to 0.6 or more) of fire occurrence
in PLUS categories ‘extensive cattle ranching’, ‘agro-silvopastoral use’ and ‘intensive cattle
ranching and agriculture’ under rapid growth and extremely dry conditions means that fire
management and wildfire risk reduction has to be at the core of land use and development poli-
cies promoting frontier expansion in the Chiquitania region.

Inhibitoryeffects on fires
The factorial and exploratory analyses with wet and dry year datasets showed that the climatic
variables becamemore important to predict probability of fire occurrence during dry years,
and that dry conditions increased the susceptibility of forests to fire undermining their ability
to inhibit or reduce risk. Although high fire risk areas remained close to the deforestation
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areas, along roads and in the agricultural zones, fire risk under extremely dry conditions
becamemore widespread. Under severely dry conditions, high fire risk area (>0.5 probability)
doubled in the ‘dense sub-humid Chiquitano forest’ and increased by 45% in the ‘Chiquitano
shrubland’, which meant that the two largest categories of land cover in the region became
more susceptible to fire. Even more, fire risk in our model spread into the northwestern area
under 2010 drought conditions, affecting the more humid Amazon forests, which generally
show a lower mean probability of fire occurrence and have higher capacity to inhibit fire. Simi-
lar results were observedby Silvestrini et al. [35] with 2050 simulations showing climate change
alone may spread fire into the highly moist Amazon forests.

Maintaining large blocks of forests is recognised as critical for managing landscape-level fire
in Amazonia, as extensive areas of forest can only be burned by many widely distributed fires
given fire spread rates in the region [10]. This was demonstrated by studies in the Brazilian
Amazonia, which found that the network of protected areas was effective at limiting the spread
of forest fires [73,35,74]. However, a very recent study by Carmenta et al. [83], which evaluated
fire activity in and around 49 Sustainable Use Reserves in Brazil, found that reserve creation
itself had no impact on spatial fire density or improved fire management (i.e. burning time).
Their study demonstrated that the effectiveness of reserve areas to protect forests from wild-
fires is not necessarily due to management but actually due to their location in more remote
and sparsely inhabited areas (i.e. de facto differences between the protected areas and unpro-
tected areas). This highlights the importance of assessing the impact of PA creation in the con-
text of pre-existing landscape attributes.

In the CMF we observed that only the Departmental Protected Areas (DPAs, and TIOCs
located in DPAs) had the ability to inhibit fire risk. Under the sustainability scenario A, the
establishment of DPAs in areas of high fire risk helped reduce probability of fire occurrence,
even under severely dry conditions.We think this can be explained by a combination of de
facto and institutional factors. Location and pre-existing landscape attributes are most likely
the main factors explaining these results because existing DPAs (used to train the model) were
mainly located in northern Chiquitania where forests were more humid and less prone to fire,
and road and population densities were lower.

Nevertheless, differences in priorities and institutional settings that determinemanagement
of protected areas may also have influenced the effectiveness of DPAs to inhibit fire risk. A
comparison with national PAs provides insights to elaborate on this point. Similarly to DPAs,
we found that national protected areas were for the most part located in areas with lower road
and population densities. Yet they showed more effect on the probability of fire occurrence
than DPAs. The higher fire risk in national protected areas may partly relate to their larger size
but we also think it may be associated to their designation type, which involved mainly a com-
bination of national parks and natural areas of integrated management. The latter allows
human settlements and production activities within the area, a factor that can contribute to
escaped/accidental fires within the PAs. Furthermore, national protected areas depend on the
central government, whilst DPAs in the region are managed by the Autonomous Departmental
Government of Santa Cruz. The regional government has employed an increasing number of
park rangers to monitor its network of protected areas after 2010, and has invested in capacity
for fire management and control practices (pers obs).

When merging all the protected areas and indigenous land into fewer categories (i.e. pro-
tected areas, indigenous land, and combined) we observed that the only category that showed
an inhibitory effect was the combined PA and TIOC category. This means that TIOCs also
seemed to play a role in protecting forests from wildfires, and indicates a need for further
research. Improving the performance of PAs/TIOCs to be effective inhibitors of fire risk would
require more contextual information that can help better differentiate the contributing factors,
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including (i) type of designation/protection and management that could be most effective, (ii)
fire use practices and human activities that should be allowed within the area, (iii) the types of
fire observed in the areas, (iv) the pre-protection baseline to compare more objectively, and (v)
the landscape configurationwithin and surrounding the protected areas.

In relation to landscape configuration,Gutiérrez-Vélez et al. [37] found that in western
Amazonia local landscape homogeneity increased fire spread while discontinuities in heteroge-
neous landscapes acted as firebreaks. On the contrary, other studies [98,36] identified forest
fragmentation and landscape heterogeneity as main drivers increasing susceptibility of tropical
forests to fire, thus suggesting landscape homogeneity as critical for managing landscape-level
fire risk. Also, suppressing the use of fire within extended tropical forest areas intertwinedwith
grasslands, such as is the case in the Chiquitania, has been observed to lead to increased vulner-
ability to even larger wildfires in other studies [99–102]. This clearly emphasizes the need to
further study the right balance between landscape patchiness and homogeneity and the combi-
nation of land management and fire use safeguards that should be allowed within and around
DPAs, TIOCs and other PA categories for them to bemore effectivewildfire inhibitors.

All in all, we must recognise that protected areas and indigenous land did not contribute sig-
nificantly to model gain in this study. Despite DPAs showed promising inhibitory effects
worth analysing further, it is important to bear in mind that the establishment of protected
areas can be challenged by the socio-institutional context that will ultimately influence their
function, or even feasibility. In addition, while protected areas may be helpful in addressing
wildfire spread and reducing ignitions within a particular area, this would not necessarily deal
with (i) the causes and main determinants of fire occurrence identified in this paper, (ii) the
spreading use of fire as population and agricultural production continue to grow, and (iii) the
leakage that protecting an area may cause in other unprotected areas of the landscape.With
these concerns in mind, the establishment of PAs as a wildfire risk management strategy
should be thought as complementary to other wildfire risk strategies, and as a case for testing
and learningmore about contextual factors (i.e. landscape and social attributes) that can
improve landscape-level fire risk management.

The fire riskmodel as a decision-support tool
This study demonstrated that a probabilistic modelling approach usingMaxEnt is appropriate
to study the fire-climate-society nexus generating insights about future wildfire risk based on
anthropogenic, biophysical and climatic determinants. Moreover, we believe that this simpler
fire risk modelling approach increases the potential for the model to be used as a decision-sup-
port tool. The model can be easily updated on an annual basis using inputs from already exist-
ing systems that monitor annual land cover change and track hotspots. These systems are
coordinated by the government, as well as by local research institutes, but are currently poorly
integrated. In this sense, the model could even serve as a ‘boundary object’ [103] to integrate
different types of data and information generated by these systems in a way that improves col-
laboration between the different agencies, and increases their capacity to anticipate and man-
age increasedwildfire risk in the future. Star and Griesemer [104] defined ‘boundary object’ as
an analytic concept that has different meanings in different social worlds but with a structure
that is common enough to more than one world to make it recognizable. Cash et al. [103] rec-
ognised the translation purpose of this concept and the potential of boundary objects–such as
models–to help disparate perspectives come together and eventually co-produce information
that can bemore salient, credible and legitimate for decision-making.

Further research to improve model performance and understanding of wildfire dynamics in
the Chiquitania region could focus on including land tenure to differentiate the effects of large-
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scale and small-scale landholders. A model with even finer resolution could capture in more
detail understory fire from slash-and-burn activities and pasture burning in smaller fields, but
it would require a different source of samples to calibrate the model and a smaller area to focus
on. Early developments currently increasing the resolution of remotely-sensed data for fire
monitoring could be used to this end, such as the combined Landsat-8 and Sentinel-2 burnt
area product with a 10 to 60 mmulti-spectral global coverage [105] and the new Visible Infra-
red Imaging Radiometer Suite (VIIRS) active fire detection algorithm generating improved 375
m imagery data [106]. Understanding micro-scale behaviour could be particularly relevant to
study the effects of bottom-up strategies to manage wildfire, which could be integrated with
agent-basedmodelling.

Conclusions
Anticipating increased fire risk in the future is crucial given plans to expand the agricultural fron-
tier and predictions of more extreme dry seasons in the Chiquitania. Severely dry conditions like
the 2010 drought showed to increase fire risk across all land use and land cover categories with
85%more potential biomass loss in areas of high fire risk compared to a normal/wet year like
2009. This risk was even higher when drought conditions interacted with rapid land cover
change. Land used for agriculture and cattle ranching seemed particularly vulnerable to fire
occurrenceunder these conditions, highlighting the need for wildfire risk management to be at
the core of land use and development policies, and the importance of anticipatory planning to
prevent potential impacts associated to large wildfires in the future. Departmental protected
areas (and TIOCs located within) showed potential inhibitory effects, but further research and
monitoring efforts would need to identify the contextual factors and appropriate land manage-
ment strategies that could improve their effectiveness to reduce wildfire risk.

This novel and simple modelling approach based on maximum entropy to simulate differ-
ent scenarios of fire risk has shown potential as a support tool to inform land and fire manage-
ment decisions at the regional level. The model can be easily updated with inputs from already
existing, albeit fragmented, systems that monitor anthropogenic activities and active fires in
Bolivia. Using the model to gain foresight of future risk can help identify management strate-
gies that deal with uncertainty and account for interactions between development trajectories
and climatic conditions. The approach is easy to replicate in other tropical landscapes that are
facing a transition to disturbance regimes dominated by more frequent and larger wildfires.

Supporting Information
S1 Fig. Dry season severity profile averaged for the Chiquitania region using the 3-month
StandardizedPrecipitation Index (SPI-3) from Jan-Feb-March 2000 to Oct-Nov-Dec 2013.
The year 2010 shows a particularly prolonged low SPI-3. The SPI is the number of standard
deviations that the observed cumulative precipitation during any given period of interest devi-
ates from the climatological average. SPI data were obtained from the NASA GPCP V2 in the
IRI Data Library. Available: http://iridl.ldeo.columbia.edu/SOURCES/.IRI/.Analyses/.SPI/.
SPI-CAMSOPI_3-Month/.
(JPG)

S2 Fig. Selected non-climatic variables for the wildfire risk model, involving (a) deforestation
from 2000 to 2010, (b) land use and land cover updated to 2010, (c) human settlements,
unpaved (secondary) roads and paved (primary) roads updated to 2010, and (d) different cate-
gories of protected area (PA) and indigenous land (TIOC) consolidated by 2009.
(JPG)
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S3 Fig. Selected climate-related variables for the wildfire risk model, involving temperature
anomalies for (a) 2009 and (b) 2010 estimated using the baselinemean temperature for the
period 2000–2010, and maximum climatological water deficit (MCWD) anomalies for (c) 2009
and (d) 2010 estimated using the baselinemeanMCWD for the period 2000–2010.
(JPG)

S4 Fig. Maps showing changes in (a) paved and unpaved roads, (b) different protected areas
and indigenous land categories, and (c) deforestation assumed for sustainability scenario A,
business as usual scenario B, and rapid growth scenario C.
(JPG)

S5 Fig. Bars show the probability of fire occurrence associated to each category of the vari-
able that combines protected area (PA) and indigenous land (TIOC).Results are obtained
from running the ‘model 2010’ with this variable only. The categories of the variable are: (1) no
PA, no TIOC, (2) National PA, (3) Departmental PA, (4) Municipal PA, (5) TIOC only, (6)
TIOC in National PA, (7) TIOC in Departmental PA, and (8) TIOC in Municipal PA.
(JPG)

S6 Fig. Results of the jackknife test of variable importance for the ‘model 2010’. The vari-
able with highest gain when used in isolation is ‘roads’ (roadcom, road network weighted by
paved and unpaved roads), which appears to have the most useful information by itself. The
variable that decreases the gain the most when it is omitted is ‘Chiquitano shrubland’
(cobuso_31), which appears to have the most information that is not present in the other vari-
ables. Values shown are averages over replicate runs. Other variables are: ‘deforestation’ (defp,
deforestation between 2000 and 2010), ‘population density’ (comden_mpo, density of human
settlements weighted by population in eachMunicipality), ‘temperature’ (tanoms, mean tem-
perature anomalies), ‘grasslands’ (cobuso_34), ‘precipitation’ (panoms, maximum climatologi-
cal water deficit (MCWD) anomalies), and ‘protected areas’ (patco, which includes different
categories of protected areas and indigenous land).
(JPG)

S7 Fig. 2009 MCD14ML hotspot density across different probability thresholds of the 2009
projection generated with the ‘model 2010’.
(JPG)

S1 File. Advantages and limitations of maximum entropy (MaxEnt)modelling for fire risk.
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ling.
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cessed for the ChiquitanoModel Forest region.
(PDF)

IncreasedWildfire Risk Driven by Climate and Development Interactions in SouthernAmazonia

PLOSONE | DOI:10.1371/journal.pone.0161323 September 15, 2016 23 / 29

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0161323.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0161323.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0161323.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0161323.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0161323.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0161323.s008
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0161323.s009
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0161323.s010
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0161323.s011
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0161323.s012


Acknowledgments
This study was conducted with support from the FCBC, FAN and INPE. Special thanks to R.
Anívarro and L. SaldañaMorón at the FCBC,A.M. Rodriguez-Montellano and C. Pinto at the
FAN, A. Lima, M. Gesteira Fonseca, E. Arai and G. Tejada Pinell at the INPE, and Y. Yu and S.
Saatchi at the JPL-NASA for their important support in data compilation and advice in data
processing.We are grateful also to J. Barlow and anonymous reviewers whose comments
improved the manuscript.

Author Contributions

Conceived and designed the experiments:LEOCATD LOA.

Performed the experiments:TD.

Analyzed the data: TD.

Contributed reagents/materials/analysis tools: TD LOA LEOCALG.

Wrote the paper:TD.

Supervised the analysis: YM LEOCALOA. Revised the manuscript: TD YM LOA LEOCA.

References
1. Marengo JA, Nobre CA, Tomasella J, OyamaMD, De Oliveira GS, De Oliveira R, et al. The drought of

Amazonia in 2005. Journal of Climate. 2008; 21: 495–516.

2. Malhi Y, RobertsJT, Betts RA, Killeen TJ, Li W, Nobre C. 2008. ClimateChange, Deforestation, and
the Fate of the Amazon. Science. 2008; 319: 169. PMID: 18048654

3. Barlow J, Parry L, Gardner TA, Ferreira J, Aragão LEO, Carmenta R, et al. The critical importanceof
considering fire in REDD+ programs. Biological Conservation. 2012; 154: 1–8.

4. Aragão LEOC, Poulter B, Barlow JB, Anderson LO, Malhi Y, Saatchi S, et al. Environmental change
and the carbon balance of Amazonian forests. Biological Reviews. 2014; 89: 913–931. doi: 10.1111/
brv.12088 PMID: 25324039

5. Malhi Y, Wright J. Spatial patternsand recent trends in the climate of tropical rainforest regions. Phil.
Trans. R. Soc. Lond. B. 2004; 359: 311–329.

6. Marengo JA, Tomasella J, Alves LM, SoaresWR, RodriguezDA. The drought of 2010 in the context
of historical droughts in the Amazon region.Geophysical Research Letters. 2011; 38: L12703.

7. Lewis SL, Brando PM, Phillips OL, van der HeijdenGMF, NepstadD. The 2010 Amazon drought. Sci-
ence. 2011; 331: 554. doi: 10.1126/science.1200807 PMID: 21292971

8. Nepstad D, Carvalho G, Barros AC, Alencar A, Capobianco JP, Bishop J, et al. Road paving, fire
regime feedbacks, and the future of Amazon forests. Forest Ecology Management. 2001; 154: 395–
407.

9. CochraneMA, LauranceWF. Synergisms among fire, land use, and climate change in the Amazon.
Ambio. 2008; 37: 522–527. PMID: 19205173

10. CochraneMA, Barber CP. Climate change, human land use and future fires in the Amazon. Global
Change Biology. 2009; 15: 601–612.

11. Aragão LEOC, Shimabukuro YE. The incidence of fire in Amazonian forests with implications for
REDD. Science. 2010; 328: 1275–1278. doi: 10.1126/science.1186925 PMID: 20522775

12. Brando PM, Balch J, Nepstad DC, MortonDC, Putz FE, CoeMT, et al. Abrupt increases in Amazonian
treemortalitydue to drought-fire interactions. Proceedings of the National Academy of Sciences of
the United States of America. 2014. doi: 10.1073/pnas.1305499111

13. Balch JK, Brando PM, Nepstad DC, CoeMT, Silverico D, Massad TJ, et al. The Susceptibility of
Southeastern Amazon Forests to Fire: Insights from a Large-Scale BurnExperiment. 2015; 65: 893–
905.

14. CochraneMA, Schulze MD. Fire as a recurrent event in tropical forests of the easternAmazon: effects
on forest structure, biomass, and species composition. Biotropica. 1999; 31: 2–16.

IncreasedWildfire Risk Driven by Climate and Development Interactions in SouthernAmazonia

PLOSONE | DOI:10.1371/journal.pone.0161323 September 15, 2016 24 / 29

http://www.ncbi.nlm.nih.gov/pubmed/18048654
http://dx.doi.org/10.1111/brv.12088
http://dx.doi.org/10.1111/brv.12088
http://www.ncbi.nlm.nih.gov/pubmed/25324039
http://dx.doi.org/10.1126/science.1200807
http://www.ncbi.nlm.nih.gov/pubmed/21292971
http://www.ncbi.nlm.nih.gov/pubmed/19205173
http://dx.doi.org/10.1126/science.1186925
http://www.ncbi.nlm.nih.gov/pubmed/20522775
http://dx.doi.org/10.1073/pnas.1305499111


15. CochraneMA, Alencar A, Schulze MD, Souza CM, NepstadDC, Lefebvre P, et al. Positive feedbacks
in the fire dynamic of closed canopy tropical forests. Science. 1999; 284: 1832–1835. PMID:
10364555

16. Barlow J, Peres CA. Fire-mediated dieback and compositional cascade in an Amazonian forest. Philo-
sophical Transactions of the Royal Society B-Biological Sciences. 2008; 363: 1787–1794.

17. Nepstad D, Stickler C, Soares-Filho BS, MerryF. Interactions amongAmazon land use, forests, and
climate: prospects for a near-termforest tipping point. Philosophical Transactions of the Royal Society
B. 2008; 363: 1737–1746.

18. Malhi Y, Aragão LEOC, Galbraith D, Huntingford C, Fisher R, Zelazowski P, et al. Exploring the likeli-
hood andmechanismof a climate-change-induced dieback of the Amazon rainforest. Proceedings of
the National Academy of Sciences of the United States of America. 2009; 106: 20610–20615. doi: 10.
1073/pnas.0804619106 PMID: 19218454

19. Davidson EA, Araujo AC, ArtaxoP, Balch JK, Brown F, BustamanteMMC, et al. The Amazon basin in
transition. Nature. 2012; 481: 321–328. doi: 10.1038/nature10717PMID: 22258611

20. Alencar AAC, Nepstad DC, Vera Diaz MdC. Forest understory fire in the Brazilian Amazon in ENSO
and non ENSO years: area burned and committed carbon emissions. Earth Interactions. 2006; 10: 1–
16.

21. Anderson LO, Aragão LEOC, GloorM, Arai E, AdamiM, Saatchi S, et al. Disentangling carbon emis-
sions due to fires in southernAmazonia during the 2010 drought.Global Biogeochemical Cycles.
2015; 29: doi: 10.1002/2014GB005008

22. de Mendonça MJC, Diaz MDV, NepstadDC, da Motta RS, Alencar A, Gomes JC, et al. The economic
cost of the use of fire in the Amazon. Ecological Economics. 2004; 49: 89–105.

23. Johnston FH, Henderson SB, Chen Y, Randerson JT, MarlierM, DeFries R, et al. EstimatedGlobal
MortalityAttributable to Smoke from Landscape Fires. Environ Health Perspectives. 2012; 120: 695–
701.

24. HahnMB, GangnonRE, Barcellos C, Asner GP, Patz JA. Influence of Deforestation, Logging, and
Fire on Malaria in the Brazilian Amazon. PLoSONE. 2014; 9: e85725. doi: 10.1371/journal.pone.
0085725PMID: 24404206

25. Smith HG, SheridanGJ, Lane PNJ, Nyman P, Haydon S. Wildfire effects on water quality in forest
catchments: A review with implications for water supply. Journal of Hydrology. 2014; 396: 170–192.

26. Smith LT, Aragão LEOC, Sabel CE, Nakaya T. Drought impacts on children’s respiratoryhealth in the
Brazilian Amazon. Sci Rep 2014; 4: http://dx.doi.org/10.1038/srep03726.

27. CochraneMA, LauranceWF. Fire as a large-scale edge effect in Amazonian forests. Journal of Tropi-
cal Ecology. 2002; 18: 311–325.

28. ArmenterasD, Retana J. Dynamics, Patterbs and Causes of Fores in Northwestern Amazonia. PLoS
ONE. 2012; 7(4): e35288. doi: 10.1371/journal.pone.0035288 PMID: 22523580

29. BowmanMS, AmacherGS, MerryFD. Fire use and prevention by traditional households in the Brazil-
ian Amazon. Ecological Economics. 2008; 67: 117–130.

30. Devisscher T, Boyd E, Malhi Y. Anticipating future risk in social-ecological systems using fuzzy cogni-
tive mapping: the case of wildfire in the Chiquitania, Bolivia. Ecology and Society. 2016: In press.

31. Lima A, Silva TSF, Aragão LEOC, Feitas RM, AdamiM, FormaggioAR, et al. Land use and land
cover changes determine the spatial relationship between fire and deforestation in the Brazilian Ama-
zon. AppliedGeography. 2012; 34: 239–246.

32. Hardy CC. Wildland fire hazard and risk: Problems, definitions, and context. Forest Ecology andMan-
agement 2005; 211: 7–82.

33. CardosoMF, HurttGC, Moore B III, Nobre CA, Prins EM. Projecting future fire activity in Amazonia.
Global Change Biology. 2003; 9: 656–669.

34. Alencar AAC, Solorzano LA, NepstadDC. Modeling forest understory fires in an easternAmazonian
landscape. Ecological Applications. 2004; 14(Supplement): S139–S149.

35. Silvestrini RA, Soares-Filho BS, Nepstad D, CoeM, RodriguesHO, AssunçãoR. Simulating fire
regimes in the Amazon in response to climate change and deforestation. Ecological Applications.
2011; 21(5): 1573–1590. PMID: 21830703

36. Soares-FilhoBS, Silvestrini R, Nepstad D, Brando P, Rodrigues H, Alencar A, et al. Forest fragmenta-
tion, climate change and understory fire regimes on the Amazonian landscapes of the Xingu headwa-
ters. LandscapeEcology. 2012; 27: 585–598.

37. Gutiérrez-Vélez VH, UriarteM, DeFries R, Pinedo-Vásquez M, FernandesK, Ceccato P, et al. Land
cover change interacts with drought severity to change fire regimes inWestern Amazonia. Ecological
Applications. 2014; 24: 1323–1340.

IncreasedWildfire Risk Driven by Climate and Development Interactions in SouthernAmazonia

PLOSONE | DOI:10.1371/journal.pone.0161323 September 15, 2016 25 / 29

http://www.ncbi.nlm.nih.gov/pubmed/10364555
http://dx.doi.org/10.1073/pnas.0804619106
http://dx.doi.org/10.1073/pnas.0804619106
http://www.ncbi.nlm.nih.gov/pubmed/19218454
http://dx.doi.org/10.1038/nature10717
http://www.ncbi.nlm.nih.gov/pubmed/22258611
http://dx.doi.org/10.1002/2014GB005008
http://dx.doi.org/10.1371/journal.pone.0085725
http://dx.doi.org/10.1371/journal.pone.0085725
http://www.ncbi.nlm.nih.gov/pubmed/24404206
http://dx.doi.org/10.1038/srep03726
http://dx.doi.org/10.1371/journal.pone.0035288
http://www.ncbi.nlm.nih.gov/pubmed/22523580
http://www.ncbi.nlm.nih.gov/pubmed/21830703


38. CochraneMA. Fire science for rainforests. Nature. 2003; 421: 913–919. PMID: 12606992

39. Phillips SJ, AndersonRP, Schapire RE. Maximumentropy modelling of species geographic distribu-
tions. EcologicalModelling. 2006; 190: 231–259.

40. Ferrarini A. Why not use nichemodelling for computing risk of wildfires ignition and spreading? Envi-
ronmental Skeptics and Critics. 2012; 1(4): 56–60.

41. Arnold JD, Brewer SC, Dennison PE. Modeling climate-fire connectionswithin the Great basin and
Upper ColoradoRiver Basin. Fire Ecology. 2014; 10(2): 64–75.

42. Elith J, Phillips SJ, Hastie T, DudíkM, Chee YE, Yates CJ. A statistical explanation of MaxEnt for ecol-
ogists. Diversity and Distributions. 2011; 17: 43–57.

43. Nazeri M, Jusoff K, Madani N, MahmudAR, BahmanAR, Jumar L. PredictiveModeling andMapping
of Malayan Sun Bear (Helarctosmalayanus) DistributionUsingMaximumEntropy. PLoSONE. 2012;
7(10): e48104. doi: 10.1371/journal.pone.0048104PMID: 23110182

44. Fortini LB, Vorsino AE, Amidon FA, Paxton EH, Jacobi JD. Large-Scale RangeCollapse of Hawaiian
Forest Birds under ClimateChange and the Need 21stCenturyConservationOptions. PLoSONE.
2015; 10(10): e0140389. doi: 10.1371/journal.pone.0140389 PMID: 26509270

45. MassadaAB, Syphard AD, Stewart SI, Radeloff VC. Wildfire ignition-distributionmodelling: a compar-
ative study in the Huron–Manistee National Forest, Michigan, USA. International Journal of Wildland
Fire. 2012; 22(2): 174–183.

46. RenardQ, Pélissier R, RameshBR, Kodandapani N. Environmental susceptibility model for predicting
forest fire occurrence in theWesternGhats of India. International Journal of Wildland Fire. 2012; 21:
368–379.

47. CarmentaR, Parry L, Blackburn A, Vermeylen S, Barlow J. Understanding human-fire interactions in
tropical forest regions: a case for interdisciplinary research across the natural and social sciences.
Ecology and Society. 2011; 16(1): 53.

48. Vides R, Reichle S, Padilla F. Planificación ecorregional del Bosque Seco Chiquitano. Fundación
para la Conservación del Bosque Chiquitano. 2007. Santa Cruz, Bolivia.

49. Pennington RT, Lavin M, Oliveira-Filho AT. Woody plant diversity, evolution, and ecology in the trop-
ics: perspectives from seasonally dry tropical forests. Annual Review of Ecology, Evolution, and Sys-
tematics. 2009; 40: 437–457.

50. Dexter KG, SmartB, Baldauf C, Baker TR, BalingaMP, BrienenRJW, et al. Floristics and biogeogra-
phy of vegetation in seasonally dry tropical regions. International ForestryReview. 2015; 17(S2).

51. Rodriguez-MontellanoAM. Incendios y quemas en Bolivia, análisis histórico desde 2000 a 2013. Edi-
torial FAN. 2014. Santa Cruz, Bolivia.

52. Seiler C, Hutjes RW, Kabat P. Climate variability and trends in Bolivia. Journal of AppliedMeteorology
and Climatology. 2013a; 52: 130–146.

53. Seiler C. Implementation and validation of a Regional ClimateModel for Bolivia. Fundación Amigos
de la Naturaleza. 2009. Santa Cruz, Bolivia.

54. Seiler C, Hutjes RW, Kabat P. Likely ranges of climate change in Bolivia. AmericanMeteorology Soci-
ety. 2013b; 52: 1303–1317.

55. Redo D, MillingtonAC, HinderyD. Deforestation dynamics and policy changes in Bolivia’s post-neo-
liberal era. Land Use Policy. 2011; 28: 227–241.

56. Chumacero JP, Tinta E, Salgado J, Vadillo A, ColqueG, OrtizMV, et al. Fundación Tierra. Informe
2010, Territorios IndígenaOriginario Campesinos en Bolivia-Entre la LomaSanta y la Pachamama.
2010. La Paz, Bolivia.

57. JiménezG. Territorios Indígenas y Áreas Protegidas en la mira: La ampliación de la frontera de indus-
trias extractivas. PetroPress. CEDIB. 2013. Available: http://www.cedib.org/wp-content/uploads/
2013/08/territorios_indigenas-y-areas-protegidas-en-la-mira.pdf.

58. Government of Bolivia. Law N337 of 11 January 2013. Ley de Apoyo a la Producción de alimentos y
restitución de bosques. La Asamblea Legislativa Plurinacional. 2013. Available: http://www.lexivox.
org/norms/BO-L-N337.xhtml.

59. Government of Bolivia. Law N650 of 19 January 2015. AgendaPatriótica del Bicenternario 2025. Min-
isterio de Autonomías. 2015. Available: http://www.lexivox.org/norms/BO-L-N650.xhtml.

60. Instituto Boliviano de Comercio Exterior (IBCE). Encuentro Agroindustrial Productivo “Más inversión,
más empleos”. ProducciónAgroalimentaria en Bolivia y el Rol del Sector Privado. Comercio Exterior
N° 214-Año 22. Instituto Boliviano de Comercio Exterior. 2013. La Paz, Bolivia.

61. Fundación Tierra. CumbreAgropecuaria: SembrandoBolivia. Apuntes críticos para la agenda agro-
pecuaria. Fundacion Tierra. 2015. La Paz, Bolivia.

IncreasedWildfire Risk Driven by Climate and Development Interactions in SouthernAmazonia

PLOSONE | DOI:10.1371/journal.pone.0161323 September 15, 2016 26 / 29

http://www.ncbi.nlm.nih.gov/pubmed/12606992
http://dx.doi.org/10.1371/journal.pone.0048104
http://www.ncbi.nlm.nih.gov/pubmed/23110182
http://dx.doi.org/10.1371/journal.pone.0140389
http://www.ncbi.nlm.nih.gov/pubmed/26509270
http://www.cedib.org/wp-content/uploads/2013/08/territorios_indigenas-y-areas-protegidas-en-la-mira.pdf
http://www.cedib.org/wp-content/uploads/2013/08/territorios_indigenas-y-areas-protegidas-en-la-mira.pdf
http://www.lexivox.org/norms/BO-L-N337.xhtml
http://www.lexivox.org/norms/BO-L-N337.xhtml
http://www.lexivox.org/norms/BO-L-N650.xhtml


62. Tejada G, Dalla-NoraE, CordobaD, Lafortezza R, Ovando A, Assis T, et al. Deforestation scenarios
for the Bolivian lowlands. Environmental Research. 2016; 144B: 49–63.

63. Müller R, Pacheco P, Montero JC. The context of deforestation and forest degradation in Bolivia: Driv-
ers, agents and institutions.Occasional Paper 108. CIFOR. 2014. Bogor, Indonesia.

64. International Model Forest Network (IMFN).ChiquitanoModel Forest. 2013. Available: http://imfn.net/
chiquitano-model-forest.

65. Justiniano H, Vides R, Flores J, Faldín L. la importanciade las organizaciones civiles en el financia-
miento de un BosqueModelo: La experiencia del BosqueModeloChiquitano. Serie “Experiencias de
BosquesModelo”. RIABM. 2014. La Paz, Bolivia.

66. Killeen T, Jardim A, Manami F, Saravia P, Rojas N. Diversity, composition, and structureof a tropical
deciduous forest in the Chiquitania region of Santa Cruz, Bolivia. Journal of Tropical Ecology. 1998;
14: 803–827.

67. Unidad Técnica Nacional de Informaciónde la Tierra (UTNIT).Mapa de coberturay uso actual de la
tierra 2010. Ministeriode Desarrollo Rural y Tierras. 2010. Available: http://cdrnbolivia.org/geografia-
fisica-nacional.htm.

68. Pennington T, Lewis G, Ratter J. Neotropical Savannas and Seasonally Dry Forests: Plant Diversity,
Biogeography and Conservation. CRC Press. 2006. Florida,US.

69. Fundación para la Conservación del Bosque Chiquitano (FCBC). Datasets shared by the institution.
2012. FCBC: Available: http://www.fcbc.org.bo/website/quienessomos.aspx?id=1.

70. FundaciónAmigos de la Naturaleza (FAN). Mapa de Deforestación de las Tierras Bajas y Yungas de
Bolivia 2000-2005-2010. 2012. Available: http://www.fan-bo.org/mapa-de-deforestacion-de-las-
tierras-bajas-y-yungas-de-bolivia-2000-2005-2010/.

71. McDaniel J, Kennard D, Fuentes A. Smokey the tapir: traditional fire knowledge and fire prevention
campaigns in lowland Bolivia. Society & Natural Resources: An International Journal. 2005; 18: 921–
931.

72. Pinto C, Vroomans V. Chaqueos e Incendios Forestales en Bolivia. Instituto Boliviano de Investiga-
ción Forestal. 2007. Santa Cruz, Bolivia.

73. Adeney JM, ChristensenNL Jr, PimmSL. Reserves Protect against Deforestation Fires in the Ama-
zon. PLoSONE. 2009; 4(4): e5014. doi: 10.1371/journal.pone.0005014 PMID: 19352423

74. Soares-FilhoBS, MoutinhoP, NepsadD, AndersonA, RodriguesH, Garcia R, et al. Role of Brazilian
Amazon protected areas in climate changemitigation. Proceedings of the National Academy of Sci-
ences USA. 2010; 107: 10821–10826.

75. Müller R, Pistorius T, Rohde S, GeroldG, Pacheco P. Policy options to reduce deforestation based on
a systematic analysis of drivers and agents in lowland Bolivia. Land Use Policy. 2013; 30(1): 895–
907.

76. Administradora Boliviana de Carreteras (ABC).Mapas de la red vial fundamental. 2015. Available:
http://www.abc.gob.bo/mapas-de-la-red-vial-fundamental Accessed: June 2015.

77. InstitutoNacional de Estadística de Bolivia (INE). Datos de población. 2010. Available: http://geo.ine.
gob.bo/cartografia/.

78. ServicioNacional de Áreas Protegidas (SERNAP). Mapa de areas protegidas nacionales. 2005.
Available: http://cdrnbolivia.org/recursos-biologicos-y-ecologicos.htm.

79. National Aeronautics and Space Administration and the U.S. Geological Survey (NASAUSGS).
Modis/Terra Land Surface Temperature and Emissivity Monthly L3 Global 0.05DegCMGdownloaded
for the Chiquitania region. 2014. Available: https://lpdaac.usgs.gov/dataset_discovery/modis/modis_
products_table/mod11c3.

80. National Aeronautics and Space Administration Tropical Rainfall MeasuringMission (NASA TRMM).
Precipitationdata downloaded for the Chiquitania region. 2014. Available: http://trmm.gsfc.nasa.gov/.

81. National Aeronautics and Space Administration Fire Information for ResourceManagement System
(NASA FIRMS). Aqua and Terra MCD14MLHotspots downloaded for the Chiquitania region. 2014.
Available: https://earthdata.nasa.gov/earth-observation-data/near-real-time/firms.

82. Giglio L. MODISCollection 5 Active Fire Product User's Guide. Version 2.4. 2010. University of Mary-
land, Maryland,US.

83. CarmentaR, Blackburn GA, Davies G, Lima A, de Sassi C, Parry LTW, et al. Does the Establishment
of Sustainable Use reserves affect FireManagement in the humid Tropics? PLoSONE. 2016; 11(2):
e0149292. doi: 10.1371/journal.pone.0149292 PMID: 26886207

84. Oliveras I, Anderson LO, Malhi Y. Application of remote sensing to understanding fire regimes and
biomass burning emissions of the tropical Andes. Global BiogeochemCycles. 2014; 28: 480–496.

IncreasedWildfire Risk Driven by Climate and Development Interactions in SouthernAmazonia

PLOSONE | DOI:10.1371/journal.pone.0161323 September 15, 2016 27 / 29

http://imfn.net/chiquitano-model-forest
http://imfn.net/chiquitano-model-forest
http://cdrnbolivia.org/geografia-fisica-nacional.htm
http://cdrnbolivia.org/geografia-fisica-nacional.htm
http://www.fcbc.org.bo/website/quienessomos.aspx?id=1
http://www.fan-bo.org/mapa-de-deforestacion-de-las-tierras-bajas-y-yungas-de-bolivia-2000-2005-2010/
http://www.fan-bo.org/mapa-de-deforestacion-de-las-tierras-bajas-y-yungas-de-bolivia-2000-2005-2010/
http://dx.doi.org/10.1371/journal.pone.0005014
http://www.ncbi.nlm.nih.gov/pubmed/19352423
http://www.abc.gob.bo/mapas-de-la-red-vial-fundamental
http://geo.ine.gob.bo/cartografia/
http://geo.ine.gob.bo/cartografia/
http://cdrnbolivia.org/recursos-biologicos-y-ecologicos.htm
https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod11c3
https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod11c3
http://trmm.gsfc.nasa.gov/
https://earthdata.nasa.gov/earth-observation-data/near-real-time/firms
http://dx.doi.org/10.1371/journal.pone.0149292
http://www.ncbi.nlm.nih.gov/pubmed/26886207


85. Díaz-DelgadoR, Lloret F, Pons X. Spatial patternsof fire occurrence in Catalonia, NE, Spain. Land-
scape Ecology. 2004; 19: 731–745.

86. Shimabukuro YE, DuarteV, Arai E, Freitas RM, Lima A, Valeriano DM, et al. Fraction images derived
fromTerra Modis data for mapping burnt areas in Brazilian Amazonia. International Journal of Remote
Sensing. 2009; 30: 1537–1546.

87. SchroederW, Prins E, Giglio L, Csiszar I, Schmidt C, Morisette J, et al. Validation of GOES and
MODIS active fire detection products using ASTER and ETM+ data. Remote Sensing of Environment.
2008; 112(5): 2711–2726.

88. Stolle F, Dennis RA, Kurniwan I, Lambin EF. Evaluation of remote sensing-based active fire datasets
in Indonesia. International Journal of Remote Sensing. 2004; 25: 471–479.

89. Phillips SJ. A Brief Tutorial on MaxEnt. AT&T Research, PrincetonUniversity. 2011. Available:
https://www.cs.princeton.edu/~schapire/maxent/tutorial/tutorial.doc.

90. Government of Bolivia. Law N300 of 15 October 2012. Ley Marco de la Madre Tierra y Desarrollo Inte-
gral para Vivir Bien. La Asamblea Legislativa Plurinacional. 2012. Available: http://www.lexivox.org/
norms/BO-L-N300.xhtml.

91. Government of Bolivia. Decree 1696 of 14 August 2013. Decreto SupremoAutoridad Plurinacional de
la Madre Tierra, Funcionamiento y mecanismos de operacion de la Autoridad Plurinacional de la
Madre Tierra, Fondo Plurinacional de la Madre Tierra. 2013. Available: http://www.lexivox.org/norms/
BO-DS-N1696.xhtml.

92. Saatchi SS, HarrisNL, Brown S, Lefsky M, Mitchard ET, SalasW, et al. Benchmarkmap of forest car-
bon stocks in tropical regions across three continents. Proceedings of the National Academy of Sci-
ences of the United States of America. 2011; 108(24): 9899–9904. doi: 10.1073/pnas.1019576108
PMID: 21628575

93. Baccini A, Goetz SJ, Walker WS, LaporteNT, SunM, Sulla-Menashe D, et al. Estimated carbon diox-
ide emissions from tropical deforestation improved by carbon-density maps. NatureClimateChange.
2012; 2: 182–185.

94. MitchardETA, Feldpausch TR, BrienenRJW, Lopez-Gonzalez G, Monteagudo A, Baker TR, et al.
2014. Markedly divergent estimates of Amazon forest carbon density from ground plots and satellites.
Global Ecology and Biogeography. 2014; 23: 935–946. PMID: 26430387

95. Devisscher T, Malhi Y, Rojas Landívar VD, Oliveras I. Understanding ecological transitions under
recurrentwildfire: A case study in the seasonally dry tropical forests of the Chiquitania, Bolivia. 2016;
360: 273–286.

96. UriarteM, Pinedo-Vasquez M, DeFries RS, Fernandes K, Gutierrez-Velez V, BaethgenWE, et al.
Depopulationof rural landscapes exacerbates fire activity in the westernAmazon. Proceedings of the
National Academy of Sciences. 2012; 109: 21546–21550.

97. Uhl C, Kauffman JB. Deforestation, fire susceptibility, and potential tree responses to fire in the east-
ern Amazon. Ecology. 1990; 71: 437–449.

98. FAO. Food and Agriculture Organisation of the United Nations. Findings and implications from a
coarse-scale global assessment of recent selectedmega-fires. 5th International Wildland Fire Confer-
ence. 2011. Sun City, South Africa.

99. Bilbao B, Leal A, MendezC. Indigenous use of fire and forest loss in Canaima National Park, Venezu-
ela: Assessment of and tools for alternative strategies of fire management in Pemon indigenous
lands, HumanEcology. 2010; 38: 663–673.

100. Sletto B, Rodriguez I. Burning, fire prevention and landscape productions among the Pemon, Gran
Sabana, Venezuela: Toward an intercultural approach to wildland fire management in Neotropical
Savannas. Journal of Environmental Management. 2013; 115: 155–166. doi: 10.1016/j.jenvman.
2012.10.041PMID: 23246908

101. Veldman JW. Guadua paniculata (Bambusoideae) en la Chiquitania boliviana: ecología del fuego y la
oportunidadpara un forraje nativo. Revista Boliviana de Ecología y Conservación Ambiental. 2008;
24: 65–74.

102. Veldman JW, Putz FE. Grass-dominated vegetation, not species-diverse natural savannah, replaces
degraded tropical forests on the southernedge of the Amazon Basin. Biological Conservation. 2011;
144: 1419–1429.

103. Cash DW, ClarkWC, Alcock F, Dickson NM, Eckley N, GustonDH, et al. Knowledge systems for sus-
tainable development. Proceedings of the National Academy of Sciences of the United States of
America. 2003; 100(14): 8086–8091. PMID: 12777623

104. Star SL, GriesemerJR. InstitutionalEcology, ‘Translations’ and BoundaryObjects: Amateurs and Pro-
fessionals in Berkeley’s Museumof Vertebrate Zoology, 1907–39. Social Studies of Science. 1989;
19: 387–420.

IncreasedWildfire Risk Driven by Climate and Development Interactions in SouthernAmazonia

PLOSONE | DOI:10.1371/journal.pone.0161323 September 15, 2016 28 / 29

https://www.cs.princeton.edu/~schapire/maxent/tutorial/tutorial.doc
http://www.lexivox.org/norms/BO-L-N300.xhtml
http://www.lexivox.org/norms/BO-L-N300.xhtml
http://www.lexivox.org/norms/BO-DS-N1696.xhtml
http://www.lexivox.org/norms/BO-DS-N1696.xhtml
http://dx.doi.org/10.1073/pnas.1019576108
http://www.ncbi.nlm.nih.gov/pubmed/21628575
http://www.ncbi.nlm.nih.gov/pubmed/26430387
http://dx.doi.org/10.1016/j.jenvman.2012.10.041
http://dx.doi.org/10.1016/j.jenvman.2012.10.041
http://www.ncbi.nlm.nih.gov/pubmed/23246908
http://www.ncbi.nlm.nih.gov/pubmed/12777623


105. Roy DP, HuangH, Sanath K, Li J, ZhangH, Lewis P, et al. Early results prototyping a global Landsat-
8 Sentinel-2 burned area product. Paper 1301, Session title: S2 and L8 Exploitation Synergy 2. Euro-
pean Space Agency Living Planet Symposium. 9–13May 2016. EuropeanSpace Agency, Prague,
Czech Republic.

106. SchroederW, Oliva P, Giglio L, Csiszar IA. The New VIIRS 375m active fire detection data product:
Algorithmdescription and initial assessment. Remote Sensing of Environment. 2014; 143: 85–96.

IncreasedWildfire Risk Driven by Climate and Development Interactions in SouthernAmazonia

PLOSONE | DOI:10.1371/journal.pone.0161323 September 15, 2016 29 / 29


