85 research outputs found

    Coral Patch and Ormonde seamounts as a product of the Madeira hotspot, Eastern Atlantic Ocean

    Get PDF
    New detailed swath bathymetry and bottom samples from Coral Patch and Ormonde seamounts provide constraints on the emplacement of the Madeira hotspot in the Eastern Atlantic Ocean. Swath bathymetric data document that Coral Patch is a composite structure, made up of at least nine distinct volcanic centres. Lithified pelagic carbonates infilling fissures in lava blocks constrain a minimal age for the volcanism in the Early Miocene and represent the first documentation of Coral Patch acting as an offshore terrigenous-starved seamount. At Coral Patch, as already observed at the Ormonde seamount, volcanism was emplaced on top of a pre-existing relief resulting from the regional tectonic compressive regime

    Li/Mg systematics in scleractinian corals: Calibration of the thermometer

    Get PDF
    We show that the Li/Mg systematics of a large suite of aragonitic coral skeletons, representing a wide range of species inhabiting disparate environments, provides a robust proxy for ambient seawater temperature. The corals encompass both zooxanthellate and azooxanthellate species (Acropora sp., Porites sp., Cladocora caespitosa, Lophelia pertusa, Madrepora oculata and Flabellum impensum) collected from shallow, intermediate, and deep-water habitats, as well as specimens cultured in tanks under temperature-controlled conditions. The Li/Mg ratios observed in corals from these diverse tropical, temperate, and deep-water environments are shown to be highly correlated with temperature, giving an exponential temperature relationship of: Li/Mg (mmol/mol) = 5.41 exp (−0.049 * T) (r² = 0.975, n = 49). Based on the standard error of the Li/Mg versus temperature correlation, we obtain a typical precision of ±0.9 °C for the wide range of species analysed, similar or better than that of other less robust coral temperature proxies such as Sr/Ca ratios.The robustness and species independent character of the Li/Mg temperature proxy is shown to be the result of the normalization of Li to Mg, effectively eliminating the precipitation efficiency component such that temperature remains as the main controller of coral Li/Mg compositions. This is inferred from analysis of corresponding Li/Ca and Mg/Ca ratios with both ratios showing strong microstructure-related co-variations between the fibrous aragonite and centres of calcification, a characteristic that we attribute to varying physiological controls on growth rate. Furthermore, Li/Ca ratios show an offset between more rapidly growing zooxanthellate and azooxanthellate corals, and hence only an approximately inverse relationship to seawater temperature. Mg/Ca ratios show very strong physiological controls on growth rate but no significant dependence with temperature, except possibly for Acropora sp. and Porites sp. A strong positive correlation is nevertheless found between Li/Ca and Mg/Ca ratios at similar temperatures, indicating that both Li and Mg are subject to control by similar growth mechanisms, specifically the mass fraction of aragonite precipitated during calcification, which is shown to be consistent with a Rayleigh-based elemental fractionation model.The highly coherent array defined by Li/Mg versus temperature is thus largely independent of coral calcification mechanisms, with the strong temperature dependence reflecting the greater sensitivity of the KdLi/Ca partition coefficient relative to KdMg/Ca. Accordingly, Li/Mg ratios exhibit a highly coherent exponential correlation with temperature, thereby providing a more robust tool for reconstructing paleo-seawater temperatures

    In-situ estimation of ice crystal properties at the South Pole using LED calibration data from the IceCube Neutrino Observatory

    Get PDF
    The IceCube Neutrino Observatory instruments about 1 km3 of deep, glacial ice at the geographic South Pole using 5160 photomultipliers to detect Cherenkov light emitted by charged relativistic particles. A unexpected light propagation effect observed by the experiment is an anisotropic attenuation, which is aligned with the local flow direction of the ice. Birefringent light propagation has been examined as a possible explanation for this effect. The predictions of a first-principles birefringence model developed for this purpose, in particular curved light trajectories resulting from asymmetric diffusion, provide a qualitatively good match to the main features of the data. This in turn allows us to deduce ice crystal properties. Since the wavelength of the detected light is short compared to the crystal size, these crystal properties do not only include the crystal orientation fabric, but also the average crystal size and shape, as a function of depth. By adding small empirical corrections to this first-principles model, a quantitatively accurate description of the optical properties of the IceCube glacial ice is obtained. In this paper, we present the experimental signature of ice optical anisotropy observed in IceCube LED calibration data, the theory and parametrization of the birefringence effect, the fitting procedures of these parameterizations to experimental data as well as the inferred crystal properties.</p

    Impact of ocean acidification and warming on the Mediterranean mussel (Mytilus galloprovincialis)

    Get PDF
    In order to assess the effects of ocean acidification and warming on the Mediterranean mussel (Mytilus galloprovincialis), specimens were reared in aquarium tanks and exposed to elevated conditions of temperature (+3°C) and acidity (−0.3 pH units) for a period of 10 months. The whole system comprised a factorial experimental design with 4 treatments (3 aquaria per treatment): control, lowered pH, elevated temperature, and lowered pH/elevated temperature. Mortality was estimated on a weekly basis and every 2 months, various biometrical parameters and physiological processes were measured: somatic and shell growth, metabolic rates and body fluid acid-base parameters. Mussels were highly sensitive to warming, with 100% mortality observed under elevated temperature at the end of our experiment in October. Mortality rates increased drastically in summer, when water temperature exceeded 25°C. In contrast, our results suggest that survival of this species will not be affected by a pH decrease of ~0.3 in the Mediterranean Sea. Somatic and shell growth did not appear very sensitive to ocean acidification and warming during most of the experiment, but were reduced, after summer, in the lowered pH treatment. This was consistent with measured shell net dissolution and observed loss of periostracum, as well as uncompensated extracellular acidosis in the lowered pH treatment indicating a progressive insufficiency in acid-base regulation capacity. However, based on the present dataset, we cannot elucidate if these decreases in growth and regulation capacities after summer are a consequence of lower pH levels during that period or a consequence of a combined effect of acidification and warming. To summarize, while ocean acidification will potentially contribute to lower growth rates, especially in summer when mussels are exposed to sub-optimal conditions, ocean warming will likely pose more serious threats to Mediterranean mussels in this region in the coming decadesThis work was funded by the EC FP7 project “Mediterranean Sea Acidification in a changing climate” (MedSeA; grant agreement 265103), the French program PNEC (Programme national environnement côtier; Institut national des sciences de l'univers) and the EC FP7 project “European Project on Ocean Acidification” (EPOCA; grant agreement 211384)Peer reviewedPeer Reviewe

    Impact of ocean acidification and warming on the Mediterranean mussel (Mytilus galloprovincialis)

    Get PDF
    In order to assess the effects of ocean acidification and warming on the Mediterranean mussel (Mytilus galloprovincialis), specimens were reared in aquarium tanks and exposed to elevated conditions of temperature (+3°C) and acidity (−0.3 pH units) for a period of 10 months. The whole system comprised a factorial experimental design with 4 treatments (3 aquaria per treatment): control, lowered pH, elevated temperature, and lowered pH/elevated temperature. Mortality was estimated on a weekly basis and every 2 months, various biometrical parameters and physiological processes were measured: somatic and shell growth, metabolic rates and body fluid acid-base parameters. Mussels were highly sensitive to warming, with 100% mortality observed under elevated temperature at the end of our experiment in October. Mortality rates increased drastically in summer, when water temperature exceeded 25°C. In contrast, our results suggest that survival of this species will not be affected by a pH decrease of ~0.3 in the Mediterranean Sea. Somatic and shell growth did not appear very sensitive to ocean acidification and warming during most of the experiment, but were reduced, after summer, in the lowered pH treatment. This was consistent with measured shell net dissolution and observed loss of periostracum, as well as uncompensated extracellular acidosis in the lowered pH treatment indicating a progressive insufficiency in acid-base regulation capacity. However, based on the present dataset, we cannot elucidate if these decreases in growth and regulation capacities after summer are a consequence of lower pH levels during that period or a consequence of a combined effect of acidification and warming. To summarize, while ocean acidification will potentially contribute to lower growth rates, especially in summer when mussels are exposed to sub-optimal conditions, ocean warming will likely pose more serious threats to Mediterranean mussels in this region in the coming decades

    Stable isotopes (delta O-18 and delta C-13), trace and minor element compositions of Recent scleractinians and Last Glacial bivalves at the Santa Maria di Leuca deep-water coral province, Ionian Sea

    No full text
    The aragonitic skeletons of bathyal cold-water corals have a high potential as geochemical in situ archives for paleoceanography. Oxygen isotopes and stable carbon isotopes (δ18O and δ13C) have been analyzed, as well as trace and minor element composit
    corecore