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Correa,5 Marco Taviani,2 Luigi Torelli,4 Teresa Trua,4 Luigi Vigliotti2 and Nevio Zitellini2
1Dipartimento di Scienze della Terra e Geologico – Ambientali, Università di Bologna, Piazza di Porta S. Donato 1, 40127 Bologna, Italy;
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Introduction

In the eastern Atlantic, a 700-km-long
belt of irregularly spaced seamounts
stretches from SW Iberia to the Ma-
deira archipelago (Fig. 1). This trail of
seamounts is late Mesozoic to Recent
in age and thought to represent the
trace of theMadeira hotspot (Morgan,
1981; Geldmacher et al., 2000).
Rocks representing initial and more

recent stages of the Madeira hotspot
outcrop at the Serra de Monchique
complex (c. 72 Ma; Miranda et al.,
2009) in southern Portugal and at
the Madeira and Porto Santo islands
(14–0 Ma; Geldmacher et al., 2000),
respectively. Knowledge of the
submerged portion of the hotspot
track is quite scarce, because of the
paucity of available bottom samples.
Previously collected volcanic samples
from the seamounts display an alka-
line affinity and a systematic south-
westward decrease in age towards
Madeira Island (Fig. 1).
Various aspects concerning the style

of emplacement, spatial distribution
and alignment of these seamounts are
still debated (Geldmacher et al.,
2005). Indeed, the emplacement of

seamounts, particularly those lying
east of the proposed hotspot track
(i.e. Coral Patch), could be related
either to (1) volcanism locally
controlled by lithospheric discontinu-
ities or to (2) magmatism related to a
weak pulsating plume (Geldmacher
et al., 2005; Merle et al., 2006).
The first arrival of the Madeira

hotspot probably took place between
the Iberian and African plates. How-
ever, since the earliest phase of conti-
nental break-up, the region has
recorded complex plate boundary
interactions. Nowadays, NW–SE
relative motion between Iberia and
Africa is �4 mm a)1 (DeMets et al.,
1994). The rifting–drifting stage was
accompanied by sub-crustal mantle
exhumation and scarce volcanism
(Boillot et al., 1995; Whitmarsh and
Wallace, 2001; Manatschal, 2004;
Rovere et al., 2004). From the middle
Cretaceous to the Oligocene, Iberia
was part of the African Plate, and the
Gulf of Cadiz remained unaffected by
any important tectonic stress. During
the Oligocene, the counterclockwise
rotation of Iberia with respect to
Africa produced diffuse intraplate
compressive deformation in the Gulf
of Cadiz (Sartori et al., 1994; Galindo-
Zaldivar et al., 2003). At about
2.0 Ma (Rosas et al., 2009), the defor-
mation started to be localized along a
set of ESE–WNW strike-slip faults,
the SWIM fault zone (Zitellini et al.,
2009; Fig. 1). During this compressive

stage, lithospheric folding developed
in the area from the Oligocene to Late
Pliocene (Burov and Cloetingh, 2009;
Zitellini et al., submitted) causing the
development in the brittle crust of
large synclines bounded by short
thrust-top anticlines, coincident with
the location of the Coral Patch and
Gorringe Bank seamounts.
This work presents new marine

geophysical and geological data col-
lected during the SWIM 2004 and
SWIM 2005 expeditions in the Atlan-
tic Ocean providing better constraints
on the evolution of the Madeira
hotspot.

Materials and methods

During the R ⁄V Urania SWIM 2004
and R ⁄V Explora SWIM 2005 cruises,
bathymetric, chirp seismic and bottom
sampling data were collected at Coral
Patch and Ormonde seamounts
(Table 1).
The bathymetric data were pro-

cessed on board using Kongsberg
PDS2000 and with the IFREMER
Caraibes software, and at ISMAR-
Bologna using Konsberg NEPTUNE
software to build a 50 · 50 m grid
spacing digital terrain model (Fig. 2)
for elevation down to 1000 m bsl and
100 · 100 m below 1000 m bsl.
Volcanics (lavas, volcanic breccia,

hyaloclastites) and sedimentary
carbonates were recovered from four
sampling sites at the Coral Patch and
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Università di Bologna, Via Zamboni 67,

40126 Bologna, Italy. Tel.:

+390512094546; e-mail: filippo.doriano@

bo.ismar.cnr.it

494 � 2010 Blackwell Publishing Ltd

doi: 10.1111/j.1365-3121.2010.00973.x



Ormonde seamounts (Figs 1 and 2
and Appendix S1). The main petro-
graphical characteristics of the volca-
nics were derived by the analysis of
thin sections and microprobe analyses
carried out on the mineral phase (see
Appendices S2 and S3). Microprobe
analyses were performed at the IGG-
CNR, Padova using a CAMECA
SX50 electron microprobe.

40Ar-39Ar step-heating and single
crystal analyses were performed on
volcanics from Ormonde and Coral

Patch at the Ar–Ar laboratory,
IGG-CNR, Pisa (Appendix S4).
Magnetic susceptibility and the

Natural Remanent Magnetization
were measured on four samples drilled
from an un-oriented sample
(SWIM04-29 ⁄1) using a Bartington
MS2 meter and a Molspin spinner
magnetometer at the palaeomagnetic
laboratory of ISMAR-Bologna.
Biostratigraphical investigation

based on Foraminifera was performed
on infilling carbonates (SWIM04-29).

Macropalaeontological analysis of
loose sediment was performed
through wet sieving using 1-, 0.5-
and 0.063-mm screens; the resulting
fractions were then observed using an
optical microscope. Hardgrounds
were inspected dry using magnifying
lenses. Whenever possible, specimens
were identified at species level.

Morphobathymetry

Coral Patch is a WSW–ENE-elon-
gated seamount, with the top at about
645 m bsl, rising about 4000 m above
the Horseshoe and Seine abyssal
plains (Fig. 2). This sub-elliptical
seamount is about 120 km long and
70 km wide.
Seismic multichannel data (Hay-

ward et al., 1999; Contrucci et al.,
2004; Zitellini et al., 2009) show that
the Coral Patch is sedimentary in
nature, up to 2500 m bsl. Neverthe-

Porto Santo

Iberia

Africa

Madeira
0–5 Ma

r F c ur o
Glo ia ra t e Z ne

o
ng

 

G
rri

e

68–62 M
a

Ampère

1 a
3 M C l Pa ch

ora  t

Seine
22 Ma

Monchique

Lisbon

Rabat

o
J 

A
n

m
al

y
Unicorn

27 Ma

72 Ma

SFZ

32°

34°

36°

38°

33°

35°

37°

39°

–17° –16° –15° –14° –13° –12° –11° –10° –9° –8° –7° –6° –5°–18°
40°

A

B

11–15 Ma

Fig. 1 Bathymetry of the Central Eastern Atlantic (Sandwell and Smith, 1997); thin black line: Gibraltar accretionary prism; thick
black line: Iberia–Africa plate boundary proposed by Zitellini et al. (2009); transparent line: Madeira hotspot track; black
triangles: SWIM samples on the Coral Patch (A) and Ormonde (B) seamounts; SFZ: SWIM fault zone. Age data from the
literature are: Monchique plutonic complex 73–72 Ma (MacIntyre and Berger, 1982; Miranda et al., 2009); Ormonde 68–62 Ma
(Féraud et al., 1982, 1986); Ampère seamount 31 Ma (Geldmacher et al., 2000); Unicorn and Seine Seamounts 27 and 22 Ma
respectively (Geldmacher et al., 2005); Porto Santo Island 14–11 Ma (Geldmacher et al., 2000); Madeira ⁄Desertas Islands volcanic
complexes <5 Ma (Geldmacher et al., 2000). J Anomaly after Olivet (1996).

Table 1 Cruises and instrument technical details.

Cruise SWIM 2004 SWIM 2005

Ship R ⁄ V Urania R ⁄ V Explora

Positioning DGPS Fugro DGPS LandStar MK Veripos

Navigation Reson PDS2000 Reson PDS2000

Bathymetry No RESON 8150 12 kHz 234 beams

CHIRP seismics 3.5–5 kHz BENTHOSII No

Sampling Grab 60 L, Dredge 200 kg No
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less, at shallower levels, volcanic rocks
are present, as documented by ROV
visual inspection (Hebbeln, 2008),
samples (Geldmacher and Hoernle,
2000) and this study.
Swath bathymetric data (Fig. 2)

document the presence of several
coalescent volcanic edifices emplaced
on the upper part of the Coral Patch
seamount. Nine principal volcanic
centres have been identified, eight of
which are clustered on the south-
western margin, while a single isolated
cone (Vince volcano: Fig. 2) arises
450 m from the north-eastern side. All
the minor volcanic edifices are about
3–5 km wide and 100–300 m high,
whereas Vince volcano is larger, reach-
ing a diameter of about 8 km. The
volcanic edifices are easily recognizable
by their sub-circular conic shape and
well-preserved volcanic morphologies
such as radially spread out elongated
lava flows on their slopes.
The western slope of the Coral

Patch gently declines, joining with
the eastern slope of Ampère Se-
amount, while the south-eastern slope
is steeper with inclinations ranging
from 5� to 20�. East of Vince volcano,
the slope becomes less steep and is
characterized by several scarps, pref-
erentially elongated NNE–SSW, rep-
resenting the head-scarps of important

gravitational collapse or mass-wasting
phenomena.
The northern sector of Coral Patch

is more complex. On its eastern side,
the slope dips gently towards the
Horseshoe Abyssal Plain and only
linear, small scours are developed
along it. The central sector is char-
acterized by a flat topography in the
shallower part and by a series of sub-
parallel North-verging scarps in the
deeper part, again most likely caused
by gravitational phenomena. The
western side is characterized by the
presence of a series of sub-parallel
ridges, oriented NE–SW, 15–30 km
long, 2–3 km wide and �100 m high.
These are anticline folds as docu-
mented by the CD seismic reflection
line reported in Hayward et al.
(1999).

Petrography and palaeomagnetism

At Coral Patch, a large block of brec-
cia, up to 30 cm in diameter (Fig. 3),
was dredged from one of its major
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Fig. 2 Shaded relief map of the SWIM 2005 survey, with superimposed morpho-
logical and structural interpretation (Appendix S5). Contour steps: 250 m.
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Fig. 3 Samples dredged at station SWIM04-29 on the Coral Patch seamount
(coordinates in Appendix S1). (A) Lava blocks infilled by bioclastic sediments. (B)
planktic assemblage: (a) Globoquadrina aff. dehiscens (primitive forms); (b) Globoro-
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(D) Magnetic parameters measured in four samples from Coral Patch: natural
remanent magnetization (NRM), magnetic susceptibility (K), Koenigsber ratio
(calculated using a value of 41 870 nT for the magnetic field).
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volcanic edifices (SWIM04-29; Fig. 2).
The block consists of decimetre-sized
altered lava fragments cemented by
sediments. From this station, hyalo-
clastites and sediment fragments were
also recovered (see Appendix S2). A
second dredge (SWIM04-28; Fig. 2)
was located on a saddle of the se-
amount, recovering several limestone
fragments and one small volcanic
fragment.
Four volcanic fragments were

sampledfromOrmondeseamount:three
are from the SWIM04-32 and one from
the SWIM04–34 dredge station.
The high degree of alteration of the

studied volcanic samples, evidenced by
veins, fractures and vesicles filled with
carbonates and ⁄or zeolites, precludes
conventionalwhole-rock analyses, nec-
essary to classify the volcanic rocks
properly. Therefore, the magmatic
affinity of these samples is derived
throughmineralogicalcriteria.Thelava
fragments from theCoral Patch breccia
are olivine-phyric lavas containing
phenocrysts of olivine (Fo83-81), and di-
opsideclinopyroxene(Wo47-50–En29-39).
Thisassemblage issimilartothebasaltic
rocksrecordedfromthenearbyAmpère
seamount (Geldmacher and Hoernle,
2000) and provides new knowledge on
the regional magmatism previously
known to include only hawaiitic lavas
(Geldmacher andHoernle, 2000).
The four lava fragments from the

Ormonde seamount resemble highly
alkaline, silica-undersaturated volca-
nics (lamprophyres and phonolites)
previously documented from this
seamount (Corner, 1982; Geldmacher
and Hoernle, 2000; Schärer et al.,
2000). In detail, samples SWIM04-
32 ⁄1, SWIM04-32 ⁄2 and SWIM04-
32 ⁄3 show mineralogical assemblages
similar to the lamprophyric dykes cut-
ting the north-eastern part of the
seamount (Corner, 1982). These rocks
are porphyric with altered olivine and
diopsidic clinopyroxene (Wo47-52–
En26-41) phenocrysts set in a ground-
mass consisting of these phases plus
altered feldspar, biotite, opaques and
altered glass. Sample SWIM04-34 is
similar to the phonolites; it has rare
phenocrystsofasodalite-groupmineral
and resorbed biotite set in a microlitic
fluidal groundmass consisting of these
phases plus altered nepheline, feldspar,
opaques and altered glass.
Palaeomagnetic analysis was

performed on four volcanic samples

from the volcanic breccia sample
SWIM04-29 ⁄1 (Fig. 3D). In spite of
the alteration, both susceptibility and
remanence are quite high, indicating
that the weathering observed in the
rock was not able to reset significantly
the iron oxides responsible for the
magnetic parameters. However, some
scatterings, observed especially in the
susceptibility, which ranges between 83
and 119 · 10)4 SI units, can be confi-
dently attributed to post-depositional
alteration. Themagnetization intensity
exhibits a mean value of 16.3 A m)1.
By considering a value of 41870 nT for
the magnetic field at the site, a
Koenigsberger ratio between 46 and
56 has been calculated, clearly indicat-
ing the dominance of the remanence on
the induced magnetization. This
magnetic anomaly, which never
exceeds a value of 200 nT, may reflect
the role of weathering on magmatic
properties.

Biostratigraphy and geochronology

The micropalaeontological analysis
of carbonate veins infilling fissures
in the volcanic breccia (station
SWIM04-29) documents a rich and
well-preserved planktonic foramini-
feral content. We positively identified
Globoquadrina aff. dehiscens (primi-
tive forms) and Globorotalia ex gr
opima nana ⁄mayeri (Fig. 3) and noted
the absence of Globigerinoides spp.
thus documenting the lowermost part
of the Miocene Epoch. Following
Bolli and Saunders (1985), this fauna
is a characteristic element of the
Catapsydrax stainforthi Zone corre-
latable with the lower part of the M1
Zone of Berggren et al. (1995) span-
ning from 23.8 to 21.5 Ma.

40Ar-39Ar step-heating of sample
SWIM04-29 ⁄1 has a disturbed age
spectrum failing to produce a reliable
plateau (Fig. 4A). Four steps form a
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mini-plateau at about 31.5 Ma
(28.4% of 39Ar release) of question-
able meaning; however, the date is
within error equal to the age of the
nearby Ampère seamount (Geldmach-
er et al., 2000).
AtOrmonde, twobiotites (SWIM04-

32 and SWIM04-34) display a moder-
ately and a slightly disturbed age spec-
tra respectively (see Appendix S4).
Isochron calculations performed on
mini-plateau steps (SWIM04-32;Fig. 4
B) and all steps (SWIM04-34; Fig. 4C)
give concordant age data, within error
equal to their respective total fusion
ages. Single crystal laser total fusion
analyses of SWIM04-34 biotites (Fig. 4
D) further support an age of about
64 Ma for the Ormonde samples, con-
sistent with ages reported in the litera-
ture (62–68 Ma; Féraud et al., 1982,
1986).

Bio-sedimentological analysis

Some dredging and grab samples were
obtained from the flanks and tops of
the two edifices of Coral Patch and
Ormonde (Fig. 2). They include freshly
detached slabs of olivine-phyric lavas
(Fig. 5A), carbonate firm- and hard-
grounds often patinated by Fe–Mn
oxides and affected by intense bioero-
sion (Fig. 5B), and Late Quaternary
palimpsest loose skeletal hash and
coarse sand (Fig. 5G). Hard-grounds
provide a substrate for encrusting
epifauna (mainly serpulids, corals,
hydroids, e.g.Sertularella sp.; Fig. 5F).
Deep-water corals are also frequent
(e.g. Madrepora oculata) often making
framestones that encase skeletal re-
mains (e.g. gastropods and pteropods,
Fig. 5C–5E). Skeletal assemblages
(Fig. 5G) consist of benthic (e.g.
bivalves, gastropods, corals, brachio-
pods) and holoplanktic (e.g. thecoso-
matous pteropods, heteropods)
biosomes and bioclasts. Lithified and
unlithified carbonates are consistent
with a persistent deep-water aphotic
setting under the influence of strong
bottom currents.

Discussion and conclusion

The new data presented here provide
evidence of at least nine distinct well--
preserved coalescent volcanic cones
located on top of Coral Patch. These
cones were emplaced on a pre-existing
sedimentary structural high.

The strongly altered basaltic lava
fragments of the Coral Patch volcanic
breccia sample failed to produce a
self-consistent 40Ar-39Ar age determi-
nation, but the Early Miocene age of
the sedimentary infilling provides a
minimum age for the emplacement of
volcanism in the area. By comparing
our petrological data with previously
published results (Geldmacher et al.,
2006), we find that the magmatism

affecting Coral Patch has a basaltic-
hawaiite range, comparable with that
observed at the Ampère Seamount
(Geldmacher and Hoernle, 2000).
Systematic variation in the chemical
composition of Ampère lavas has been
related to different degrees of partial
melting above discrete pulses of a
mantle plume (Geldmacher and
Hoernle, 2000). We argue here that a
similar process could also control the
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recovered at st. SWIM04-28, showing different stages of lithification. (D) Close-up of
the sample in 5.3, displaying coarse skeletal components entrapped in a poorly
lithified matrix, including benthic (g) (Amphissa acutecostata) and holoplanktonic (h)
gastropods, deep-water branching corals (m) (Madrepora oculata) and others. (E)
Coarse coral frame bearing hard-ground made up of degraded and bioeroded
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basaltic-hawaiite variation observed
in the Coral Patch lavas, although
more samples are required to support
this claim confidently.
Zitellini et al. (unpublished data)

suggest that the whole sector of the
Eurasia–Africa plate boundary has
been affected by lithospheric folding
since the Oligocene. This implies an
overlap of the two processes: oblique
lithospheric collision and hotspot-re-
lated volcanism.
Burov and Cloetingh (2009) show

how lithospheric folding in a low
convergence rate (<1.5 cm a)1) area
having a relatively young (<150 Ma)
lithosphere can occur only if an exter-
nal perturbation, such as a mantle
plume, is also present and how this
may result in a reduction in the
folding wavelength of the overlying
lithospheric plate. In the Gulf of
Cadiz, lithospheric folding is mani-
fested in a confined region near the
plate boundary and above the hotspot
track; thus, folding and thrusting in
this area were probably influenced by
the plume emplacement. The facts
that all the seamounts of the area
(Gorringe, Coral Patch and Ampère
seamounts) are ENE–WSW-oriented,
in response to regional compression,
and that all of them show evidence on
their tops of the Madeira hotspot trail
suggest that magmatism affecting
these structures is strictly correlated
with the propagating lithospheric
compressive fracture.
In our hypothesis, the lithospheric

folding processes formed elongated
lithospheric discontinuities, which
should have acted as preferential
paths for the upwelling of mantle
material, thus accounting for both
the irregularly spaced hotspot
seamounts, with large kilometre-sized
gaps in between, and the WSW–ENE
orientation of the volcanic centres at
the Coral Patch, Ampère and
Ormonde seamounts.
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