261 research outputs found

    Trials of Additional Effective Movements for Music Therapy Session for the Elderly

    Get PDF
    Authors have dealt with Shikoku division of Integrative Medicine Japan (IMG), and reported various activities such as music therapy. Currently, we have tried additional effective movements including the game of rock-paper-scissors (RPS), and the gesture of sign language (SL) to the music. RPS seems to be effective for cognitive and motor function exercises, as well as singing, speech, verbal communication, movements of extremities and so on. From SL and vocal communication, people can distinguish word, sentence, and discourse levels of integration. By Japanese SL to the music, people can understand the poem and rhythmical movements of finger and body

    Baryons in O(4) and Vibron Model

    Get PDF
    The structure of the reported excitation spectra of the light unflavored baryons is described in terms of multi-spin valued Lorentz group representations of the so called Rarita-Schwinger (RS) type (K/2, K/2)* [(1/ 2,0)+ (0,1/2)] with K=1,3, and 5. We first motivate legitimacy of such pattern as fundamental fields as they emerge in the decomposition of triple fermion constructs into Lorentz representations. We then study the baryon realization of RS fields as composite systems by means of the quark version of the U(4) symmetric diatomic rovibron model. In using the U(4)/ O(4)/ O(3)/ O(2) reduction chain, we are able to reproduce quantum numbers and mass splittings of the above resonance assemblies. We present the essentials of the four dimensional angular momentum algebra and construct electromagnetic tensor operators. The predictive power of the model is illustrated by ratios of reduced probabilities concerning electric de-excitations of various resonances to the nucleon.Comment: Phys. Rev. D (in press, 2001

    Quantum inequalities for the free Rarita-Schwinger fields in flat spacetime

    Full text link
    Using the methods developed by Fewster and colleagues, we derive a quantum inequality for the free massive spin-32{3\over 2} Rarita-Schwinger fields in the four dimensional Minkowski spacetime. Our quantum inequality bound for the Rarita-Schwinger fields is weaker, by a factor of 2, than that for the spin-12{1\over 2} Dirac fields. This fact along with other quantum inequalities obtained by various other authors for the fields of integer spin (bosonic fields) using similar methods lead us to conjecture that, in the flat spacetime, separately for bosonic and fermionic fields, the quantum inequality bound gets weaker as the the number of degrees of freedom of the field increases. A plausible physical reason might be that the more the number of field degrees of freedom, the more freedom one has to create negative energy, therefore, the weaker the quantum inequality bound.Comment: Revtex, 11 pages, to appear in PR

    Relativistic Contributions to Deuteron Photodisintegration in the Bethe-Salpeter Formalism

    Get PDF
    In plane wave one-body approximation the reaction of deuteron photodisintegration is considered in the framework of the Bethe-Salpeter formalism for two-nucleon system. Results are obtained for deuteron vertex function, which is the solution of the homogeneous Bethe-Salpeter equation with a multi-rank separable interaction kernel, with a given analytical form. A comparison is presented with predictions of non-relativistic, quasipotential approaches and the equal time approximation. It is shown that important contributions come from the boost in the arguments of the initial state vertex function and the boost on the relative energy in the one-particle propagator due to recoil.Comment: 29 pages, 6 figure

    The Simons Observatory microwave SQUID multiplexing detector module design

    Full text link
    Advances in cosmic microwave background (CMB) science depend on increasing the number of sensitive detectors observing the sky. New instruments deploy large arrays of superconducting transition-edge sensor (TES) bolometers tiled densely into ever larger focal planes. High multiplexing factors reduce the thermal loading on the cryogenic receivers and simplify their design. We present the design of focal-plane modules with an order of magnitude higher multiplexing factor than has previously been achieved with TES bolometers. We focus on the novel cold readout component, which employs microwave SQUID multiplexing (ÎĽ\mumux). Simons Observatory will use 49 modules containing 60,000 bolometers to make exquisitely sensitive measurements of the CMB. We validate the focal-plane module design, presenting measurements of the readout component with and without a prototype detector array of 1728 polarization-sensitive bolometers coupled to feedhorns. The readout component achieves a 95%95\% yield and a 910 multiplexing factor. The median white noise of each readout channel is 65 pA/Hz\mathrm{pA/\sqrt{Hz}}. This impacts the projected SO mapping speed by <8%< 8\%, which is less than is assumed in the sensitivity projections. The results validate the full functionality of the module. We discuss the measured performance in the context of SO science requirements, which are exceeded.Comment: Accepted to The Astrophysical Journa
    • …
    corecore