162 research outputs found

    Thermodynamic pathways to genome spatial organization in the cell nucleus

    Get PDF
    The architecture of the eukaryotic genome is characterized by a high degree of spatial organization. Chromosomes occupy preferred territories correlated to their state of activity and, yet, displace their genes to interact with remote sites in complex patterns requiring the orchestration of a huge number of DNA loci and molecular regulators. Far from random, this organization serves crucial functional purposes, but its governing principles remain elusive. By computer simulations of a Statistical Mechanics model, we show how architectural patterns spontaneously arise from the physical interaction between soluble binding molecules and chromosomes via collective thermodynamics mechanisms. Chromosomes colocalize, loops and territories form and find their relative positions as stable hermodynamic states. These are selected by “thermodynamic switches” which are regulated by concentrations/affinity of soluble mediators and by number/location of their attachment sites along chromosomes. Our “thermodynamic switch model” of nuclear architecture, thus, explains on quantitative grounds how well known cell strategies of upregulation of DNA binding proteins or modification of chromatin structure can dynamically shape the organization of the nucleus

    CTCF-mediated transcriptional regulation through cell type-specific chromosome organization in the {\beta}-globin locus

    Get PDF
    The principles underlying the architectural landscape of chromatin beyond the nucleosome level in living cells remains largely unknown despite its potential to play a role in mammalian gene regulation. We investigated the 3-dimensional folding of a 1 Mbp region of human chromosome 11 containing the {\beta}-globin genes by integrating looping interactions of the insulator protein CTCF determined comprehensively by chromosome conformation capture (3C) into a polymer model of chromatin. We find that CTCF-mediated cell type specific interactions in erythroid cells are organized to favor contacts known to occur in vivo between the {\beta}-globin locus control region (LCR) and genes. In these cells, the modeled {\beta}-globin domain folds into a globule with the LCR and the active globin genes on the periphery. By contrast, in non-erythroid cells, the globule is less compact with few but dominant CTCF interactions driving the genes away from the LCR. This leads to a decrease in contact frequencies that can exceed 1000-fold depending on the stiffness of the chromatin and the exact positioning of the genes. Our findings show that an ensemble of CTCF contacts functionally affects spatial distances between control elements and target genes contributing to chromosomal organization required for transcription.Comment: Full article, including Supp. Mat., is available at Nucleic Acids Research, doi: 10.1093/nar/gks53

    Insulators and imprinting from flies to mammals

    Get PDF
    The nuclear factor CTCF has been shown to be necessary for the maintenance of genetic imprinting at the mammalian H19/Igf2 locus. MacDonald and colleagues now report in BMC Biology that the mechanisms responsible for maintaining the imprinted state in Drosophila may be evolutionarily conserved and that CTCF may also play a critical role in this process

    Disruption of genomic neighbourhood at the imprinted IGF2-H19 locus in Beckwith–Wiedemann syndrome and Silver–Russell syndrome

    Get PDF
    Hyper- and hypomethylation at the IGF2-H19 imprinting control region (ICR) result in reciprocal changes in IGF2-H19 expression and the two contrasting growth disorders, Beckwith–Wiedemann syndrome (BWS) and Silver–Russell syndrome (SRS). DNA methylation of the ICR controls the reciprocal imprinting of IGF2 and H19 by preventing the binding of the insulator protein, CTCF. We here show that local changes in histone modifications and CTCF–cohesin binding at the ICR in BWS and SRS together with DNA methylation correlate with the higher order chromatin structure at the locus. In lymphoblastoid cells from control individuals, we found the repressive histone H3K9me3 and H4K20me3 marks associated with the methylated paternal ICR allele and the bivalent H3K4me2/H3K27me3 mark together with H3K9ac and CTCF–cohesin associated with the non-methylated maternal allele. In patient-derived cell lines, the mat/pat asymmetric distribution of these epigenetic marks was lost with H3K9me3 and H4K20me3 becoming biallelic in the BWS and H3K4me2, H3K27me3 and H3K9ac together with CTCF–cohesin becoming biallelic in the SRS. We further show that in BWS and SRS cells, there is opposing chromatin looping conformation mediated by CTCF–cohesin binding sites surrounding the locus. In normal cells, lack of CTCF–cohesin binding at the paternal ICR is associated with monoallelic interaction between two CTCF sites flanking the locus. CTCF–cohesin binding at the maternal ICR blocks this interaction by associating with the CTCF site downstream of the enhancers. The two alternative chromatin conformations are differently favoured in BWS and SRS likely predisposing the locus to the activation of IGF2 or H19, respectively

    CTCF binds to sites in the major histocompatibility complex that are rapidly reconfigured in response to interferon-gamma

    Get PDF
    Activation of the major histocompatibility complex (MHC) by interferon-gamma (IFN−γ) is a fundamental step in the adaptive immune response to pathogens. Here, we show that reorganization of chromatin loop domains in the MHC is evident within the first 30 min of IFN−γ treatment of fibroblasts, and that further dynamic alterations occur up to 6 h. These very rapid changes occur at genomic sites which are occupied by CTCF and are close to IFN−γ-inducible MHC genes. Early responses to IFN−γ are thus initiated independently of CIITA, the master regulator of MHC class II genes and prepare the MHC for subsequent induction of transcription

    Long-range chromatin interactions at the mouse Igf2/H19 locus reveal a novel paternally expressed long non-coding RNA

    Get PDF
    Parental genomic imprinting at the Igf2/H19 locus is controlled by a methylation-sensitive CTCF insulator that prevents the access of downstream enhancers to the Igf2 gene on the maternal chromosome. However, on the paternal chromosome, it remains unclear whether long-range interactions with the enhancers are restricted to the Igf2 promoters or whether they encompass the entire gene body. Here, using the quantitative chromosome conformation capture assay, we show that, in the mouse liver, the endodermal enhancers have low contact frequencies with the Igf2 promoters but display, on the paternal chromosome, strong interactions with the intragenic differentially methylated regions 1 and 2. Interestingly, we found that enhancers also interact with a so-far poorly characterized intergenic region of the locus that produces a novel imprinted long non-coding transcript that we named the paternally expressed Igf2/H19 intergenic transcript (PIHit) RNA. PIHit is expressed exclusively from the paternal chromosome, contains a novel discrete differentially methylated region in a highly conserved sequence and, surprisingly, does not require an intact ICR/H19 gene region for its imprinting. Altogether, our data reveal a novel imprinted domain in the Igf2/H19 locus and lead us to propose a model for chromatin folding of this locus on the paternal chromosome

    Cell-type-specific long-range looping interactions identify distant regulatory elements of the CFTR gene

    Get PDF
    Identification of regulatory elements and their target genes is complicated by the fact that regulatory elements can act over large genomic distances. Identification of long-range acting elements is particularly important in the case of disease genes as mutations in these elements can result in human disease. It is becoming increasingly clear that long-range control of gene expression is facilitated by chromatin looping interactions. These interactions can be detected by chromosome conformation capture (3C). Here, we employed 3C as a discovery tool for identification of long-range regulatory elements that control the cystic fibrosis transmembrane conductance regulator gene, CFTR. We identified four elements in a 460-kb region around the locus that loop specifically to the CFTR promoter exclusively in CFTR expressing cells. The elements are located 20 and 80 kb upstream; and 109 and 203 kb downstream of the CFTR promoter. These elements contain DNase I hypersensitive sites and histone modification patterns characteristic of enhancers. The elements also interact with each other and the latter two activate the CFTR promoter synergistically in reporter assays. Our results reveal novel long-range acting elements that control expression of CFTR and suggest that 3C-based approaches can be used for discovery of novel regulatory elements

    ADP-ribose polymers localized on Ctcf–Parp1–Dnmt1 complex prevent methylation of Ctcf target sites

    Get PDF
    PARylation [poly(ADP-ribosyl)ation] is involved in the maintenance of genomic methylation patterns through its control of Dnmt1 [DNA (cytosine-5)-methyltransferase 1] activity. Our previous findings indicated that Ctcf (CCCTC-binding factor) may be an important player in key events whereby PARylation controls the unmethylated status of some CpG-rich regions. Ctcf is able to activate Parp1 [poly(ADP-ribose) polymerase 1], which ADP-ribosylates itself and, in turn, inhibits DNA methylation via non-covalent interaction between its ADP-ribose polymers and Dnmt1. By such a mechanism, Ctcf may preserve the epigenetic pattern at promoters of important housekeeping genes. The results of the present study showed Dnmt1 as a new protein partner of Ctcf. Moreover, we show that Ctcf forms a complex with Dnmt1 and PARylated Parp1 at specific Ctcf target sequences and that PARylation is responsible for the maintenance of the unmethylated status of some Ctcf-bound CpGs. We suggest a mechanism by which Parp1, tethered and activated at specific DNA target sites by Ctcf, preserves their methylation-free status

    Non-random, individual-specific methylation profiles are present at the sixth CTCF binding site in the human H19/IGF2 imprinting control region

    Get PDF
    Expression of imprinted genes is classically associated with differential methylation of specific CpG-rich DNA regions (DMRs). The H19/IGF2 locus is considered a paradigm for epigenetic regulation. In mice, as in humans, the essential H19 DMR—target of the CTCF insulator—is located between the two genes. Here, we performed a pyrosequencing-based quantitative analysis of its CpG methylation in normal human tissues. The quantitative analysis of the methylation level in the H19 DMR revealed three unexpected discrete, individual-specific methylation states. This epigenetic polymorphism was confined to the sixth CTCF binding site while a unique median-methylated profile was found at the third CTCF binding site as well as in the H19 promoter. Monoallelic expression of H19 and IGF2 was maintained independently of the methylation status at the sixth CTCF binding site and the IGF2 DMR2 displayed a median-methylated profile in all individuals and tissues analyzed. Interestingly, the methylation profile was genetically transmitted. Transgenerational inheritance of the H19 methylation profile was compatible with a simple model involving one gene with three alleles. The existence of three individual-specific epigenotypes in the H19 DMR in a non-pathological situation means it is important to reconsider the diagnostic value and functional importance of the sixth CTCF binding site

    Distinct Methylation Changes at the IGF2-H19 Locus in Congenital Growth Disorders and Cancer

    Get PDF
    Background: Differentially methylated regions (DMRs) are associated with many imprinted genes. In mice methylation at a DMR upstream of the H19 gene known as the Imprint Control region (IC1) is acquired in the male germline and influences the methylation status of DMRs 100 kb away in the adjacent Insulin-like growth factor 2 (Igf2) gene through long-range interactions. In humans, germline-derived or post-zygotically acquired imprinting defects at IC1 are associated with aberrant activation or repression of IGF2, resulting in the congenital growth disorders Beckwith-Wiedemann (BWS) and Silver-Russell (SRS) syndromes, respectively. In Wilms tumour and colorectal cancer, biallelic expression of IGF2 has been observed in association with loss of methylation at a DMR in IGF2. This DMR, known as DMR0, has been shown to be methylated on the silent maternal IGF2 allele presumably with a role in repression. The effect of IGF2 DMR0 methylation changes in the aetiology of BWS or SRS is unknown. Methodology/Principal Findings: We analysed the methylation status of the DMR0 in BWS, SRS and Wilms tumour patients by conventional bisulphite sequencing and pyrosequencing. We show here that, contrary to previous reports, the IGF2 DMR0 is actually methylated on the active paternal allele in peripheral blood and kidney. This is similar to the IC
    corecore