126 research outputs found

    A non-conserved amino acid variant regulates differential signalling between human and mouse CD28

    Get PDF
    CD28 superagonistic antibodies (CD28SAb) can preferentially activate and expand immunosuppressive regulatory T cells (Treg) in mice. However, pre-clinical trials assessing CD28SAbs for the therapy of autoimmune diseases reveal severe systemic inflammatory response syndrome in humans, thereby implying the existence of distinct signalling abilities between human and mouse CD28. Here, we show that a single amino acid variant within the C-terminal proline-rich motif of human and mouse CD28 (P212 in human vs. A210 in mouse) regulates CD28-induced NF-ÎșB activation and pro-inflammatory cytokine gene expression. Moreover, this Y209APP212 sequence in humans is crucial for the association of CD28 with the Nck adaptor protein for actin cytoskeleton reorganisation events necessary for CD28 autonomous signalling. This study thus unveils different outcomes between human and mouse CD28 signalling to underscore the importance of species difference when transferring results from preclinical models to the bedside

    Staphylococcal enterotoxin B (SEB) activates TCR- and CD28-mediated inflammatory signals in the absence of MHC class II molecules

    Get PDF
    The inflammatory activity of staphylococcal enterotoxin B (SEB) relies on its capacity to trigger polyclonal T‐cell activation by binding both T‐cell receptor (TCR) and costimulatory receptor CD28 on T cells and MHC class II and B7 molecules on antigen presenting cells (APC). Previous studies highlighted that SEB may bind TCR and CD28 molecules independently of MHC class II, yet the relative contribution of these interactions to the pro‐inflammatory function of SEB remained unclear. Here, we show that binding to MHC class II is dispensable for the inflammatory activity of SEB, whereas binding to TCR, CD28 and B7 molecules is pivotal, in both human primary T cells and Jurkat T cell lines. In particular, our finding is that binding of SEB to B7 molecules suffices to trigger both TCR‐ and CD28‐mediated inflammatory signalling. We also provide evidence that, by strengthening the interaction between CD28 and B7, SEB favours the recruitment of the TCR into the immunological synapse, thus inducing lethal inflammatory signallin

    A simple cytofluorimetric score may optimize testing for biallelic CEBPA mutations in patients with acute myeloid leukemia

    Get PDF
    Acute myeloid leukemia with biallelic mutation of CEBPA (CEBPA-dm AML) is a distinct good prognosis entity recognized by WHO 2016 classification. However, testing for CEBPA mutation is challenging, due to the intrinsic characteristics of the mutation itself. Indeed, molecular analysis cannot be performed with NGS technique and requires Sanger sequencing. The association of recurrent mutations or translocations with specific immunophenotypic patterns has been already reported in other AML subtypes. The aim of this study was the development of a specific cytofluorimetric score (CEBPA-dm score), in order to distinguish patients who are unlikely to harbor the mutation. To this end, the correlation of CEBPA-dm score with the presence of the mutation was analyzed in 50 consecutive AML patients with normal karyotype and without NPM1 mutation (that is mutually exclusive with CEBPA mutation). One point each was assigned for expression of HLA DR, CD7, CD13, CD15, CD33, CD34 and one point for lack of expression of CD14. OS was not influenced by sex, age and CEBPA-dm score. Multivariate OS analysis showed that CEBPA-dm (p < 0.02) and FLT3-ITD (p < 0.01) were the strongest independent predictors of OS. With a high negative predictive value (100%), CEBPA-dm score < 6 was able to identify patients who are unlikely to have the mutation. Therefore, the application of this simple score might optimize the use of expensive and time-consuming diagnostic and prognostic assessment in the baseline work up of AML patients

    CD28 between tolerance and autoimmunity: The side effects of animal models [version 1; referees: 2 approved]

    Get PDF
    Regulation of immune responses is critical for ensuring pathogen clearance and for preventing reaction against self-antigens. Failure or breakdown of immunological tolerance results in autoimmunity. CD28 is an important co-stimulatory receptor expressed on T cells that, upon specific ligand binding, delivers signals essential for full T-cell activation and for the development and homeostasis of suppressive regulatory T cells. Many in vivo mouse models have been used for understanding the role of CD28 in the maintenance of immune homeostasis, thus leading to the development of CD28 signaling modulators that have been approved for the treatment of some autoimmune diseases. Despite all of this progress, a deeper understanding of the differences between the mouse and human receptor is required to allow a safe translation of pre-clinical studies in efficient therapies. In this review, we discuss the role of CD28 in tolerance and autoimmunity and the clinical efficacy of drugs that block or enhance CD28 signaling, by highlighting the success and failure of pre-clinical studies, when translated to humans

    FcRn Overexpression in Transgenic Mice Results in Augmented APC Activity and Robust Immune Response with Increased Diversity of Induced Antibodies

    Get PDF
    Our previous studies have shown that overexpression of bovine FcRn (bFcRn) in transgenic (Tg) mice leads to an increase in the humoral immune response, characterized by larger numbers of Ag-specific B cells and other immune cells in secondary lymphoid organs and higher levels of circulating Ag-specific antibodies (Abs). To gain additional insights into the mechanisms underlying this increase in humoral immune response, we further characterized the bFcRn Tg mice. Our Western blot analysis showed strong expression of the bFcRn transgene in peritoneal macrophages and bone marrow derived dendritic cells; and a quantitative PCR analysis demonstrated that the expression ratios of the bFcRn to mFcRn were 2.6- and 10-fold in these cells, respectively. We also found that overexpression of bFcRn enhances the phagocytosis of Ag-IgG immune complexes (ICs) by both macrophages and dendritic cells and significantly improves Ag presentation by dendritic cells. Finally, we determined that immunized bFcRn mice produce a much greater diversity of Ag-specific IgM, whereas only the levels, but not the diversity, of IgG is increased by overexpression of bFcRn. We suggest that the increase in diversity of IgG in Tg mice is prevented by a selective bias towards immunodominant epitopes of ovalbumin, which was used in this study as a model antigen. These results are also in line with our previous reports describing a substantial increase in the levels of Ag-specific IgG in FcRn Tg mice immunized with Ags that are weakly immunogenic and, therefore, not affected by immunodominance

    The diagnosis and treatment of posttransplant lymphoproliferative disorders.

    Get PDF
    • 

    corecore