145 research outputs found

    Abroad View of Wellness

    Get PDF
    A presentation on a Study Abroad trip taken to Hungary

    Brettschichtholz aus acetylierter Radiata Kiefer

    Get PDF
    Acetylierte Radiata Kiefer, das Produkt einer speziellen Holzmodifikation, besitzt eine verbesserte Dauerhaftigkeit und Formstabilität. Sie ist grundsätzlich für die Herstellung von Brettschichtholz frei bewitterter Konstruktionen geeignet. In der Forschungsarbeit werden entsprechende Kennwerte, die für die Bemessung von Bauteilen und von Verbindungsmitteln erforderlich sind, mit wissenschaftlichen Verfahren hergeleitet

    Reproduction of Twentieth Century Intradecadal to Multidecadal Surface Temperature Variability in Radiatively Forced Coupled Climate Models

    Get PDF
    [1] Coupled Model Intercomparison Project 3 simulations that included time-varying radiative forcings were ranked according to their ability to consistently reproduce twentieth century intradecadal to multidecadal (IMD) surface temperature variability at the 5° by 5° spatial scale. IMD variability was identified using the running Mann-Whitney Z method. Model rankings were given context by comparing the IMD variability in preindustrial control runs to observations and by contrasting the IMD variability among the ensemble members within each model. These experiments confirmed that the inclusion of time-varying external forcings brought simulations into closer agreement with observations. Additionally, they illustrated that the magnitude of unforced variability differed between models. This led to a supplementary metric that assessed model ability to reproduce observations while accounting for each model\u27s own degree of unforced variability. These two metrics revealed that discernable differences in skill exist between models and that none of the models reproduced observations at their theoretical optimum level. Overall, these results demonstrate a methodology for assessing coupled models relative to each other within a multimodel framework

    Puffing Topography and Interpersonal Bonding Behavior Observed Among Recovering Drug Addicts Versus General Smokers

    Get PDF
    poster abstractSmokers can inherently manipulate nicotine doses on a puff-by-puff basis. The character of smoking behavior may be determined by using complex forms of smoking topography in laboratory settings or by unobtrusively observing the time spent smoking a single cigarette, the number of puffs taken, interpuff intervals and smokers’ behaviors. The purpose of this study was to observe and compare smoking topography and interpersonal bonding behaviors of recovering drug addicts to that of general smokers in a natural setting (introduction). Following a variable chemical substance detox/treatment period, Fairbanks addiction treatment patients spend 3-12 weeks in follow-up treatment in two groups: Partial Hospitalized Patients (PHP) and Intensive Outpatients (IOP). PHP and IOP form tight interpersonal bonds and friendships with each other. Patients are periodically released and they meet and smoke together at an approved outdoor smoking area. From a distance, PHP and IOP (20 men and 20 women) cigarette puffing behaviors were unobtrusively observed and recorded. Two calibrated investigators, using a stop watch monitored the exact time of lighting and the extinguishing of each cigarette. For each subject, the number of puffs taken was recorded and the interpuff interval was calculated. The same protocol was followed for a population of general smokers observed on the campus of IUPUI (methods). The mean interpuff intervals were IUPUI men: 25.2 seconds (SD 11.93); IUPUI women: 30.9 seconds (SD 16.0); Fairbanks men: 16.2 seconds (SD 6.21); and Fairbanks women: 21.1 seconds (SD 6.51). There was a statistically significant difference in interpuff intervals between the general smokers and the recovering addicts (p<0.001) and this effect was not dependent upon gender. Behavioral observations between general smokers versus recovering addicts will be presented (results). Smokers who were recovering from chemical drug addiction smoked more intensely than the general smoking population and their smoking behaviors were often quite different (conclusions)

    Physical and functional interactions between Werner syndrome helicase and mismatch-repair initiation factors

    Get PDF
    Werner syndrome (WS) is a severe recessive disorder characterized by premature aging, cancer predisposition and genomic instability. The gene mutated in WS encodes a bi-functional enzyme called WRN that acts as a RecQ-type DNA helicase and a 3′-5′ exonuclease, but its exact role in DNA metabolism is poorly understood. Here we show that WRN physically interacts with the MSH2/MSH6 (MutSα), MSH2/MSH3 (MutSβ) and MLH1/PMS2 (MutLα) heterodimers that are involved in the initiation of mismatch repair (MMR) and the rejection of homeologous recombination. MutSα and MutSβ can strongly stimulate the helicase activity of WRN specifically on forked DNA structures with a 3′-single-stranded arm. The stimulatory effect of MutSα on WRN-mediated unwinding is enhanced by a G/T mismatch in the DNA duplex ahead of the fork. The MutLα protein known to bind to the MutS α–heteroduplex complexes has no effect on WRN-mediated DNA unwinding stimulated by MutSα, nor does it affect DNA unwinding by WRN alone. Our data are consistent with results of genetic experiments in yeast suggesting that MMR factors act in conjunction with a RecQ-type helicase to reject recombination between divergent sequences

    Connecting Artificial Brains to Robots in a Comprehensive Simulation Framework: The Neurorobotics Platform

    Get PDF
    Combined efforts in the fields of neuroscience, computer science, and biology allowed to design biologically realistic models of the brain based on spiking neural networks. For a proper validation of these models, an embodiment in a dynamic and rich sensory environment, where the model is exposed to a realistic sensory-motor task, is needed. Due to the complexity of these brain models that, at the current stage, cannot deal with real-time constraints, it is not possible to embed them into a real-world task. Rather, the embodiment has to be simulated as well. While adequate tools exist to simulate either complex neural networks or robots and their environments, there is so far no tool that allows to easily establish a communication between brain and body models. The Neurorobotics Platform is a new web-based environment that aims to fill this gap by offering scientists and technology developers a software infrastructure allowing them to connect brain models to detailed simulations of robot bodies and environments and to use the resulting neurorobotic systems for in silico experimentation. In order to simplify the workflow and reduce the level of the required programming skills, the platform provides editors for the specification of experimental sequences and conditions, environments, robots, and brain–body connectors. In addition to that, a variety of existing robots and environments are provided. This work presents the architecture of the first release of the Neurorobotics Platform developed in subproject 10 “Neurorobotics” of the Human Brain Project (HBP).1 At the current state, the Neurorobotics Platform allows researchers to design and run basic experiments in neurorobotics using simulated robots and simulated environments linked to simplified versions of brain models. We illustrate the capabilities of the platform with three example experiments: a Braitenberg task implemented on a mobile robot, a sensory-motor learning task based on a robotic controller, and a visual tracking embedding a retina model on the iCub humanoid robot. These use-cases allow to assess the applicability of the Neurorobotics Platform for robotic tasks as well as in neuroscientific experiments.The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 604102 (Human Brain Project) and from the European Unions Horizon 2020 Research and Innovation Programme under Grant Agreement No. 720270 (HBP SGA1)

    Store-operated calcium entry controls innate and adaptive immune cell function in inflammatory bowel disease

    Get PDF
    Inflammatory bowel disease (IBD) is characterized by dysregulated intestinal immune responses. Using mass cytometry (CyTOF) to analyze the immune cell composition in the lamina propria (LP) of patients with ulcerative colitis (UC) and Crohn's disease (CD), we observed an enrichment of CD(4+) effector T cells producing IL-17A and TNF, CD(8+) T cells producing IFNγ, T regulatory (Treg) cells, and innate lymphoid cells (ILC). The function of these immune cells is regulated by store-operated Ca(2+) entry (SOCE), which results from the opening of Ca(2+) release-activated Ca(2+) (CRAC) channels formed by ORAI and STIM proteins. We observed that the pharmacologic inhibition of SOCE attenuated the production of proinflammatory cytokines including IL-2, IL-4, IL-6, IL-17A, TNF, and IFNγ by human colonic T cells and ILCs, reduced the production of IL-6 by B cells and the production of IFNγ by myeloid cells, but had no effect on the viability, differentiation, and function of intestinal epithelial cells. T cell-specific deletion of CRAC channel genes in mice showed that Orai1, Stim1, and Stim2-deficient T cells have quantitatively distinct defects in SOCE, which correlate with gradually more pronounced impairment of cytokine production by Th1 and Th17 cells and the severity of IBD. Moreover, the pharmacologic inhibition of SOCE with a selective CRAC channel inhibitor attenuated IBD severity and colitogenic T cell function in mice. Our data indicate that SOCE inhibition may be a suitable new approach for the treatment of IBD
    corecore