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[1] Coupled Model Intercomparison Project 3 simulations that included time-varying
radiative forcings were ranked according to their ability to consistently reproduce twentieth
century intradecadal to multidecadal (IMD) surface temperature variability at the 5° by
5° spatial scale. IMD variability was identified using the running Mann-Whitney Z method.
Model rankings were given context by comparing the IMD variability in preindustrial
control runs to observations and by contrasting the IMD variability among the
ensemble members within each model. These experiments confirmed that the inclusion
of time-varying external forcings brought simulations into closer agreement with
observations. Additionally, they illustrated that the magnitude of unforced variability
differed between models. This led to a supplementary metric that assessed model ability to
reproduce observations while accounting for each model’s own degree of unforced
variability. These two metrics revealed that discernable differences in skill exist between
models and that none of the models reproduced observations at their theoretical optimum

level. Overall, these results demonstrate a methodology for assessing coupled models

relative to each other within a multimodel framework.

Citation: Brown, P. T., E. C. Cordero, and S. A. Mauget (2012), Reproduction of twentieth century intradecadal to
multidecadal surface temperature variability in radiatively forced coupled climate models, J. Geophys. Res., 117, D11116,

doi:10.1029/2011JD016864.

1. Introduction

[2] Coupled general circulation models (CGCMs) have
become the primary tools for making projections of future
surface temperature changes. In order for these projections
to instill confidence, models should have a history of accu-
rately reproducing spatial and temporal characteristics of
past climate variation. Despite this, much of the work
regarding CGCM validation has focused on time mean state
climate statistics that infer little about climate variation
through the historical record [e.g., Giorgi and Mearns, 2002;
Knutson et al., 2006, Pierce et al., 2009; Reichler and Kim,
2008; Tebaldi et al., 2005]. While it is important that a
model be able to produce the correct climatic mean and vari-
ance of a given variable, ideally models should also be able to
reproduce historical variations of such variables in time.

[3] One reason for restricting climate model evaluation to
time mean state statistics is that free-running CGCMs can-
not be expected to reproduce unforced variability through-
out the historical record (variability that emerges simply

"Department of Meteorology and Climate Science, San Jose State
University, San Jose, California, USA.

Plant Stress and Water Conservation Laboratory, Agricultural
Research Service, U.S. Department of Agriculture, Lubbock, Texas, USA.

Corresponding author: P. T. Brown, Department of Meteorology and
Climate Science, San Jose State University, San Jose, CA 95192-0104,
USA. (patrick.brown@sjsu.edu)

©2012. American Geophysical Union. All Rights Reserved.

from the internal dynamics of the coupled climate system).
For instance, the El Nifio—Southern Oscillation (ENSO)
influences global temperature change on the interannual
time scale [Neelin et al., 1998]. Free-running CGCMs have
their own ENSO variability, and the phasing of this cycle is
not expected to match historical observations. Even on the
multidecadal scale, continental temperature is heavily con-
strained by oceanic temperature variation [Compo and
Sardeshmukh, 2009]. As a result, it is likely that unforced
oceanic circulations, such as those associated with Pacific
Decadal Variability (PDV) and the Atlantic Meridional
Overturning Circulation (AMOC), have heavily influenced
global surface temperature evolution on the multidecadal
scale [DelSole et al., 2011; Kravtsov and Spannagle, 2008;
Swanson et al., 2009; Wu et al., 2011; Zhang et al., 2007].
A portion of this oceanic variability, however, may be con-
strained by external radiative forcings [Goosse and Renssen,
2004; Ottera et al., 2010]. In this case, retrospective CGCM
simulations may be expected to correctly reproduce some
portion of the multidecadal scale temperature variability
over the twentieth century. Indeed, the influence of external
radiative forcings on the global surface temperature has
been shown to exceed that of internal variability as the time
scale of interest increases from the interannual to the mul-
tidecadal level [Solomon et al., 2011; Hegerl et al., 2007].

[4] The present study evaluates intradecadal to multi-
decadal (IMD) temperature variability in retrospective CGCM
simulations from the World Climate Research Program’s
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Figure 1.
and 8-10.

(WCRP) Coupled Model Intercomparison Project phase 3
(CMIP 3) multimodel data set. The simulations investigated
here included historical estimates of radiative boundary for-
cings but were initialized from arbitrary times in each model’s
preindustrial control run. Therefore, this study implicitly
examines the degree to which observed IMD variability is
reproducible via the inclusion of time-varying forcings. A
methodology is developed that assesses model ability to
reproduce observations while also accounting for variation
in the magnitude of modeled unforced variability.

2. Data

[5] Observational surface temperature data was obtained
from the HadCRUT3v combined land and marine gridded
surface temperature data set [Jones et al., 1999; Rayner
et al., 2003]. Only those grid points with completely unin-
terrupted monthly records between 1902 and 1999 were
investigated (for details on the aggregation of raw station
data to the regular 5° by 5° grid, see Jones et al. [1999, and
references therein]). The 211 locations that met this criterion
are numbered in Figure 1. The monthly temperature series at
each location was averaged to form an annual temperature
series. It should be noted that these grid areas represent a
limited portion of the Earth’s surface (~10%) and it is
unknown if the results discussed below would hold for a

The 211 grid locations investigated, where the colors identify regions in Figures 4, 5,

data set covering the entire globe. Additionally, these grid
points have a strong spatial emphasis on the Northern
Hemisphere, particularly the United States and Europe. The
impact of this particular spatial distribution is investigated in
section 4.2.

[6] The CGCM runs that were evaluated were those of the
CMIP 3 climate of the twentieth century experiment
(20C3M [Meehl et al., 2007a]) as well as the associated
preindustrial control experiment (PICNTRL). Models were
considered that had at least three ensemble members avail-
able for the 20C3M experiment as well as at least 220 years
available for the PICNTRL experiment. The 12 models that
met these criteria are listed in Table 1.

[7] Before assessment was conducted, model output was
bilinearly interpolated to the same 5° by 5° grid used in the
HadCRUT3v data set (spatial weighing was also performed
as is discussed in section 4.1). This interpolation was
designed to minimize biases associated with grid resolution
differences between models. Additionally, the 5° by 5°
spatial scale was larger than any of the individual models’
grid scales. Because of this, subgrid-scale influences (e.g.,
local topography) were unlikely to have introduced any
significant biases when model output was compared with
observations. Also, this spatial scale is near the minimum
required for the influence of twentieth century external
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Number of Number of Number of
20C3M 20C3M Versus 98 Year
Ensemble 20C3M Pair PICNTRL
Model Originating Group(s) 20C3M Forcing Members Wise Comparisons Segments
CCSM3 National Center for Atmospheric Research GHG, So, Su, V, O3, H, B 8 28 9
CGCM3.1(T47) Canadian Centre for Climate Modeling and Analysis GHG, Su 5 10 15
CSIRO-MK3.0 CSIRO Atmospheric Research GHG, Su, O; 3 3 4
ECHAMS/MPI-OM Max Planck Institute for Meteorology GHG, Su, H, O3 4 6 6
ECHO-G Meteorological Institute of the University of Bonn, GHG, So, Su, V, O3 5 10 4
Meteorological Research Institute of KMA,
and Model and Data group.
GFDL-CM2.0 U.S. Department of Commerce, NOAA, GHG, O3, Su, V, So, L 3 3 6
Geophysical Fluid Dynamics Laboratory
GFDL-CM2.1 U.S. Department of Commerce, NOAA, GHG, O3, Su, V, So, L 3 3 6
Geophysical Fluid Dynamics Laboratory
GISS-EH NASA Goddard Institute for Space Studies GHG, So, Su, V, 03, H, L, B 5 10 5
GISS-ER NASA Goddard Institute for Space Studies GHG, So, Su, V, O3, H,L, B 9 36 6
MIROC3.2(medres) Center for Climate System Research (University of GHG, So, V, O3, L, Su, B, H 3 3 6
Tokyo), National Institute for Environmental Studies,
and Frontier Research Center for Global Change
(JAMSTEC)
MRI-CGCM2.3.2 Meteorological Research Institute GHG, H, So, Su, V, O3 5 10 4
PCM National Center for Atmospheric Research GHG, So, Su, V, O3 4 6 8

“The 20C3M forcing abbreviations are identified as follows: GHG, well-mixed greenhouse gases; H, halocarbons; Su, sulfate tropospheric aerosols; L,
land use; V, volcanic aerosols; O3, ozone; B, other aerosols; So, solar irradiance.

forcings to be apparent on surface temperature [Karoly and
Wu, 2005].

3. Identification of IMD Variability in Time
Series Data

[8] Modeled and observed time series were analyzed via
the running Mann-Whitney Z (MWZ) method. This method
has been used previously to identify significant IMD varia-
tion in observational time series [Masiokas et al., 2010;
Mauget, 2003, 2004; Cordero et al., 2011]. Here, this work
has been extended to comparisons between modeled and
observed time series in a similar manner to Mauget et al.
[2012]. Specifically, the running MWZ method is used to
highlight IMD regimes of arbitrary onset and duration in
both modeled and observed annual temperature time series
(from 1902 to 1999) at each of the 211 grid locations
investigated (Figure 1). This method is described in the six
steps below and illustrated in Figure 2.

[s] 1. All the data values in the given annual temperature
series at a particular grid location (e.g., Figure 2a) are ranked
from lowest to highest.

[10] 2. The temperature series is sampled by a moving
window of incrementally varying size from 6 to 30 years.
For each window size, every possible sample in the time
series is investigated. For example, when the window is
6 years in length, the first sample contains the years 1902—
1907, the second sample contains the years 1903—1908 and
the last sample contains the years 1994-1999. This same
procedure is followed for all the remaining window sizes
(7-30 years in duration).

[11] 3. A Mann-Whitney U statistic [Mann and Whitney,
1947] is calculated for each of the samples described in
step 2. The U statistic is defined as the total number of years
outside the sample that precede each year inside the sample

in rank. Stated in another way, the number of nonsample
years that were cooler than each year within a given sample
is summed to obtain the U statistic. The U statistic can also
be calculated using

U/:Rj_inl[nlz_‘— 1]7 (1)
where R; is the sum of the ranks for the sample / and #; is the
size of the window in years [Mendenhall et al., 1990; Wilks,
1995].

[12] 4. U statistics for each sample are normalized via a Z
transformation,

)

The Z transformation relies on the assumption that random
sampling would produce a Gaussian distribution of U values
between two extreme cases. The first extreme case would be
that the given sample contains all the lowest ranking years in
the temperature series, and the second extreme case would
be that the given sample contains all the highest ranking
years in the temperature series. Thus for a 98 year time series
divided into a 10 year sample and an 88 year nonsample, the
highest possible U statistic would occur when the sample
contains the 10 highest-ranked years (U = 88*10). Con-
versely, the lowest possible U statistic would result from a
sample containing the 10 lowest ranked years (U = 0*10).
The mean (u) of the null distribution used in the Z trans-
formation is simply the average of the two extreme cases,

ninj
= 3
2 ) ( )

where n; is the number of years inside the sample and n; is
the number of years outside the sample. The standard
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Figure 2. (a) Temperature series for HadCRUT3v data at location 42 in Figure 1. (b) All significant
(1ZI > 1.96) runs of U statistics in the time series. (c) Original temperature series and the most significant
periods that occurred over nonoverlapping samples plotted together. All gap years that are not part of a Z

period are considered to have a Z value of zero.

deviation (o) of this null distribution may be estimated by
[Mendenhall et al., 1990]

o [ngnglng 1-21111 + 1]. @)

[13] 5. After all U statistics for each sample are Z trans-
formed, all the periods significant at a 95% confidence level
(1Z1 > 1.96) are pooled (e.g., Figure 2b).

[14] 6. The significant periods are screened with the intent
of identifying the samples with the highest absolute Z
values, at all window lengths, that do not overlap in time.
This is accomplished in two steps. First the period with the
highest absolute Z value is identified and second all over-
lapping periods with lesser absolute Z values are deleted.
This two-step process continues indefinitely until no
remaining periods overlap in time (e.g., Figure 2¢). Any year
that is not included in one of the remaining significant Z
periods is assigned a value of zero so that a continuous series
of Z values can be produced.

[15] The resulting Z series highlights IMD variability in
time series data. The central assumption of the method is that
climate variations consist of simple, noncyclic, ranking

regimes that occur over a range of time scales and have
arbitrary onset times. This inclusive assumption gives the
method an advantage over some filtering methods that may
be considered simpler or more intuitive. For instance, spec-
tral filters make assumptions about periodicity in the data
that may be inappropriate for the study of temperature series
affected by noncyclical radiative boundary forcings. The
ranking-based nature of the method also allows for making
observed versus modeled and model versus model compar-
isons with biased variance and/or means. Finally, the method
is resistant to outliers that may be unrepresentative of the
temperature regime being experienced at a given time (e.g.,
1955 in Figure 2).

[16] As mentioned above, the process of Z transforming
the U statistics was done by utilizing a normal null distri-
bution, which assumed random and independent sampling.
This is in contrast to how the method had been employed in
some previously published works [Masiokas et al., 2010;
Mauget, 2003, 2004; Cordero et al., 2011]. In these cases,
the null distribution was created from Monte Carlo trials that
attempted to embody a hypothetical climate characterized by
year-to-year temperature persistence but no IMD variability.
Thus, the purpose of these previous null distributions was to
constrain the Z values that could be considered significant in

4 0f 15
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the traditional sense. In the present application, this method
would be unfavorable because Monte Carlo trials would
produce differing o values for modeled and observed null
distributions (equation (2)) of a given window length.
Accordingly, identically ranked temperature series would
result in slightly differing Z series. Because the overall goal
of this analysis was to find dissimilarity between modeled
and observed IMD variability, this would have been unac-
ceptable. In order to guarantee that identical ranking
sequences resulted in identical Z series, it was necessary to
fix null parameters like those in equations (3) and (4) (see
Mauget et al. [2012] for further discussion).

[17] Because observed and simulated temperature series
display persistence, the assumption of random and inde-
pendent sampling inevitably caused the detection of what
would traditionally be considered “spurious” significance.
Because of this issue, unusually large absolute Z values are
seen in much of this analysis (e.g., 1ZI > 6.0). It must be
emphasized that this was not a problem in the current
application of the method as the ultimate goal of the MWZ
transformation was to highlight IMD variability in modeled
and observed climate data so that they could be compared. In
typical significance testing in climate analysis, the goal is to
test observed variability against a null hypothesis that
assumes a hypothetical stationary climate condition. As
these hypothetical conditions are normally required to pos-
sess the interannual persistence of observed data, that
hypothesis has to account for the persistence. Since the goal
is not to test for nonstationarity in a time series but instead is
to compare the ranking sequences of modeled and observed
time series, consistent normalization of the U statistic trumps
the use of realistic assumptions regarding the autocorrelation
present in the data.

[18] The MWZ method uses 6 years as the minimum
window length for the detection of significance because this
is near the threshold where external forcings would likely be
nearly undetectable through the noise of unforced variabil-
ity. It is true that many external forcings (such as increases in
the atmospheric concentrations of long-lived greenhouse
gasses) are only expected to dominate unforced variability
on the multidecadal scale and beyond [Boer, 2011]. Despite
this, other external radiative forcings that are incorporated in
the retrospective (20C3M) runs likely have a nonnegligible
influence on the intradecadal scale [Solomon et al., 2011]. In
particular, volcanic eruptions as well as solar variability can
influence surface temperature on time scales less than a
decade in length. As the time scale approaches the interan-
nual level, however, temperature changes would likely be
dominated by ENSO as well as other modes of unforced
variability.

4. Model Assessment Relative to Observations

[19] Models were assessed by comparing the Z series from
the simulated and observed temperature, where the differ-
ence between modeled and observed Z series at each year t is
defined by the Z error,

ZE, = ZM{)deled(t) - ZOb.\'(t) . (5)
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Modeled Z series were scored on the basis of their mean
absolute Z error (MAZE) over the 98 year period from 1902
to 1999,

1 98
MAZE = oo > \ZE. (6)

Smaller MAZE scores imply better agreement between the
ranking sequences in observed and modeled time series.
Therefore, because the MAZE metric is based on rankings, it
does not incorporate information about the absolute magni-
tude of data values in a time series. Figure 3 shows an
example of a modeled temperature series with a ranking
sequence that matched observations relatively successfully,
producing a low MAZE value of 1.00 (Figure 3a), as well as
an example of a modeled temperature series with a ranking
sequence that matched observations relatively poorly, pro-
ducing a high MAZE value of 4.14 (Figure 3c¢). Figures 3b
and 3d emphasize the degree to which these two modeled
time series differed from observations by representing the
magnitude of each year’s Z error with a bar. The temperature
series in Figure 3a had similar phasing (onset and duration)
of IMD variability as was seen in observations (Figure 2). In
contrast, the phasing of IMD variability shown in Figure 3¢
was a relative mismatch to observations.

4.1. Historical IMD Variability in Observations

[20] Figure 4 is a spatiotemporal representation of the Z
series for the HadCRUT3v observational data set. In this
plot, all 211 Z series in the domain have been collapsed onto
a single vertical axis that is ordered according to Figure 1.
This realization of the data illustrates that significant cool
regimes dominated the first third of the twentieth century
before warm regimes subsequently became more wide-
spread. The significance and onset of regime changes is seen
to vary widely by location. The most significant late century
warm regimes were observed across the Southern Hemi-
sphere (grid numbers 1-37) as well as eastern and central
Asia (grid numbers 115-150). Some instances of anomalous
late century cool regimes are also observed. The most sig-
nificant late century cool regime was seen in the southeast-
ern United States (grid numbers 49-52 and 75-79). This
anomalous feature, often referred to as the U.S. “warming
hole” has been well documented elsewhere [e.g., Robinson
et al., 2002; Pan et al., 2004; Kunkel et al., 2006] and is
usually attributed to unforced variability or possibly local
sulfate aerosol loading. In addition to the U.S. warming hole,
some late century cool regimes can be seen in the eastern
Mediterranean region (grid numbers 156—158) as well as in
eastern and northern Europe (grid numbers 195-199).

[21] Overall model performance was assessed by mea-
suring how well a given model’s simulations matched the
spatiotemporal Z series representation of observations.
Mathematically, models were scored on the basis of their
figure of merit (FM), which is defined as the area-weighted
average of each Z series’ MAZE over the 211 locations,

M Zizglré:larea(igrd)MAZE(igrd)
B Zizgui:l area(igrd)

™)
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Figure 3. (a) Temperature time series and associated Z Series for Echo-G 20CM3 run 2 at location 42.
(b) Z error for Echo-G 20CM3 run 2 at location 42. (c) Temperature time series and associated Z Series for
Echam5/MPI-OM 20CM3 run 2 at location 42. (d) Z error for Echam5/MPI-OM 20CM3 run 2 at location
42. Note that the Z error plots are relative to the Z series associated with observations at location 42 shown

in Figure 2c.

4.2. The 20C3M Versus Obs Experiment

[22] Models were ranked on the basis of their 20C3M
ensemble members’ ability to reproduce observations as
quantified through the FM. In total, 57 20C3M simulations
were examined from the 12 different models listed in
Table 1. Figures 5a and 5c¢ show the spatiotemporal repre-
sentation of the Z series for two 20C3M simulations from
different models. Figure 5a represents the single simulation
with the best (lowest) FM, while Figure 5c represents the
single simulation with the worst (highest) FM. These results
are emphasized in Figures 5b and 5d, which show the spa-
tiotemporal Z error between the modeled and observed Z
series. It is apparent that even the best simulations disagree
with observations. This is to be expected as unforced vari-
ability inevitably played a role in both the simulated and
observed evolution of twentieth century climate.

[23] To investigate the effects of this unforced variability,
FMs were calculated for every available ensemble member
of each model. The 57 FMs associated with each individual
ensemble member are plotted in Figure 6, where the models
are ranked according to their ensemble mean FM (the simple
average of the ensemble member’s FMs for each model;

model identities can be found in the auxiliary material).' For
some models, like model 11, the FMs produced by their
individual ensemble members were relatively consistent.
These ensemble members were initialized with differing
oceanic conditions and had only external radiative boundary
forcings in common. Therefore, it was inferred that models
with little spread in their FMs produced IMD variability that
was heavily influenced by external radiative forcings. For
these models, there was high confidence that their ensemble
mean FM was representative of their ability to reproduce
observations. Conversely, models with large spreads in their
20C3M versus observations (20C3M versus Obs) FM dis-
tributions, such as model 8, were likely to be more heavily
influenced by unforced variability, and thus there was less
confidence that the ensemble mean FM for these models was
representative of their ability to reproduce observations. This
concept was formalized with an application of the Student’s
t test (two tailed, assuming unequal variance) to each pair-
wise combination of models to test if their ensemble mean
FMs were statistically distinguishable. This test was neces-
sary to make any meaningful statements about a given

'Auxiliary materials are available in the HTML. doi:10.1029/
2011JD016864.
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series plot for the 20C3M simulation that was the largest mismatch to observations (ECHO G run 2) and
(d) its associated spatiotemporal Z error plot.
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model’s ability to reproduce observations relative to any
other model. Figure 7 shows the results of these tests. Of the
66 model-model comparisons made, 35 were judged to be
statistically unique, while 31 were judged to be statistically
indistinguishable (at the 90th percentile). Accordingly, rel-
ative model performance could only be assessed in those
35 statistically significant comparisons (colored cells in
Figure 7). The models that were ranked 1st, 3rd, and 4th in

Figure 6, outperformed the highest number of remaining
models (6 each) at a statistically significant level. Con-
versely, the 12th ranked model was outperformed by 9 of
the 11 models ranked ahead of it at a statistically significant
level.

[24] The sensitivity of the above results to the spatial
domain used was also investigated. Model rankings were
recomputed using a subset of the spatial domain shown in
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Figure 7. Results of Student’s t tests between the 20C3M versus Obs FM distributions for each model.
The value in each cell is the p value of the t statistic (rounded to the hundreds place) for a comparison
between the models in the associated row and column. Statistically significant values are colored accord-
ing to their level of significance and indicate that the ensemble FM means for those model combinations

are distinct from one another.
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Figure 1. This subset consisted of 99 grid cells that were
more evenly spaced, and had less of an emphasis on the
United States and Europe. This domain resulted in model
rankings that were slightly different than the ones shown
above. Three models shifted two positions each while four
models shifted one position each. The remaining five models
remained in the same position that they had occupied pre-
viously. These results suggest that the model rankings in
question are affected to some degree by the domain used and
that this analysis favors those models that reproduce obser-
vations well over the United States and Europe. Despite this,
the model rankings did not change significantly under a new
domain which indicates that the rankings shown above are
relatively robust.

5. Average Spatiotemporal IMD Variability
in Models

[25] Ensemble mean spatiotemporal Z series plots for each
model are shown in Figure 8, while Figure 9 shows the
corresponding Z error plots. Figures 8 and 9 are averages of
the spatiotemporal Z series plots of the models’ individual
ensemble members and are thus not the result of applying
the MWZ methodology to ensemble mean temperature
series. It should be noted that the plots associated with
numerous ensemble members emphasize the forced signal
more than the plots associated with fewer ensemble members.

[26] All the models investigated showed the broad warm-
ing pattern that was apparent in observations (Figure 4).

Also, many of the models reproduced the general overall
cool-warm-cool-warm pattern that was seen at many loca-
tions. Most models produced early century regimes that were
generally too warm compared with observations. In the
middle of the century, however, most models tended to
produce Z values that were too cold compared with obser-
vations. Late century warm regimes were reproduced rela-
tively successfully by most of the models. However, very
few late century cool regimes were present in these ensemble
means, which suggests that their presence in observations
was either a result of unforced variability or a forced
mechanism that was not well modeled.

[27] Despite the overall reproduction of a warming pat-
tern, models differed considerably in their ability to repro-
duce the specific spatiotemporal signatures of IMD
variability in the observed record. The analysis in section 4.2
suggested that the models ranked 1st, 3rd, and 4th were
statistically better at reproducing observations than the bot-
tom six models, and that the model ranked 2nd was statis-
tically better at reproducing observations than the bottom
five models. This is apparent in the spatiotemporal analysis
as well. The top four models were consistent in their ability
to reproduce the observed pattern that the most significant
early century cool regimes were located in the Southern
Hemisphere (grid numbers 1-37), east central Asia (grid
numbers 115-150) and in proximity to the northeastern
Atlantic Ocean (grid numbers 190-211). Models 5, 7, and
8 displayed some similar behavior but matched observa-
tions to a lesser degree. Models 9, 10, 11, and 12 did not
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produce this pattern at all. Model 6 as well as the models
ranked 10th to 12th also failed to reproduce many of the
warm regimes that appear in observations from the 1930s to
the 1960s. The top three models did the best job of repre-
senting late century warmth as being most significant in the
Southern Hemisphere (grid numbers 1-37) and east central
Asia (grid numbers 115-150). Some of the poorer scoring
models also produced this pattern but still produced high
Z errors because of differences in the magnitude of
significance.

6. Context for Model Performance

[28] Because the methodology outlined in section 4 has
not been used in previous studies, there is no standard
measure for what may be considered good or poor FMs. In
order to give the results of the 20C3M versus Obs experi-
ment some context, two additional experiments (PICNTRL
versus Obs and 20C3M versus 20C3M) were conducted.
The PICNTRL versus Obs experiment was intended to
identify poor FM values associated with decorrelated IMD
variability, while the 20C3M versus 20C3M experiment was
intended to identify good FM values associated with a sat-
isfactory reproduction of forced IMD temperature variabil-
ity. The latter experiment was also used to form a relative
performance metric that effectively handicapped model
performance on the basis of each model’s own potential to
reproduce observations.

6.1. PICNTRL Versus Obs Experiment

[29] To determine the magnitude of FM values consistent
with essentially random variability, each model’s PICNTRL
simulations were compared with observations of the twen-
tieth century at the 211 grid locations. For each model,
multiple 98 year segments were extracted from their
PICNTRL experiment at 60 year lag intervals (e.g., 0-98,
60—158, 120-218, etc.). This worked to increase the number
of 98 year segments that could be produced while still
ensuring that run FMs were minimally dependent. The first
segment for each model was excluded from evaluation so
that any nonphysical adjustments associated with model
spin-up would not contaminate the results. In total, seventy-
nine 98 year PICNTRL runs were investigated from the
12 models (Table 1).

[30] In this scenario, high FM values were expected since
there was no reason to anticipate similar IMD variability
between an unforced simulation and the observed twentieth
century climate. Figure 10 illustrates the general character-
istics of the IMD variability in unforced simulations from
different models. The coincident occurrences of significant
warm (cool) regimes in given regions indicates that the
unforced simulations produce IMD variability that is semi-
consistent across space and time, suggesting an influence
from natural oceanic oscillations.

6.2. The 20C3M Versus 20C3M Experiment

[31] To estimate good (low) FMs, an experiment was per-
formed that calculated FMs between 20C3M ensemble
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Figure 10. Spatiotemporal Z series plots for preindustrial control runs from four different models.

members of the same model. FMs for this experiment were
calculated in the same way described in section 4, except that
the Z error was redefined,

ZE, = ZModeled(t)i - ZMadeled(t)jv (8)
where each modeled Z value came from differing ensemble
members within a given model (represented by the subscripts
iand j, i # j). FMs were calculated between each possible
pairwise comparison of 20C3M ensemble members for each
model (128 total comparisons as indicated in Table 1).

[32] IMD temperature variability can result from both
external radiative boundary forcings as well as unforced
variability [Latif et al., 2010]. Because of the random ini-
tialization of a model’s CMIP 3 ensemble members, the
unforced variability among those ensemble members is
essentially random. Consequently, even if a model were to
represent the climatic response to external forcings perfectly,
its 20C3M versus 20C3M FMs would still be nonzero
because of the unforced component. Because ensemble
members within each model incorporate identical radiative
boundary forcings, any nonzero FM in this experiment can
be attributed exclusively to differences in initial conditions
and thus can act as a quantitative measure of the unforced
variability for that model. As a result, these intraensemble
FMs are consistent with the best possible scores that could
be expected in the 20C3M versus Obs experiment.

6.3. FM Results for All Experiments

[33] The 20C3M versus Obs FMs are plotted along with
the PICNTRL versus Obs and 20C3M versus 20C3M FMs
in Figure 11a. Intuitively, we expect the PICNTRL versus
Obs FMs to be higher than the 20C3M versus Obs FMs.
This was true for many of the models although it was not
universal as the models ranked 7th, 9th, 10th, and 11th all
had at least one of their 20C3M versus Obs FMs score worse
than one of their PICNTRL versus Obs FMs. This would
indicate that these 20C3M versus Obs ensemble members
did a particularly poor job of reproducing the observations.
Despite this, Student’s t tests indicated that for each model,
the 20C3M versus Obs FM means were statistically distin-
guishable from their own PICNTRL versus Obs FM means
at the 90th percentile or greater. This illustrated that external
radiative boundary forcings acted to bring IMD temperature
variability into a greater agreement with observations in
every model investigated.

[34] Also in accordance with expectations, the 20C3M
versus 20C3M FMs generally scored better than the 20C3M
versus Obs FMs. Student’s t tests indicated that for each
model 20C3M versus Obs FM means were statistically dis-
tinguishable from their own 20C3M versus 20C3M FM
means at the 95th percentile or greater. This illustrated that
none of the models reproduced observations at their theo-
retical optimum (where a model’s only source of error is due
to unforced variability). Assuming that the observational
data set used in this analysis was essentially correct, this
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would suggest that there was substantial room for improve-
ment in the simulation of twentieth century IMD variability.

[35] The performance of the 20C3M versus 20C3M
experiment also differed perceptibly from model to model.
For example, the mean 20C3M versus 20C3M FM for
model 8 was 2.18 compared with 1.76 for model 11. This
suggested that there were distinct differences in the magni-
tude of unforced variability between the models. Because the
spatial domain had a strong emphasis on the United States
and Europe, these differences in internal variability might be
traced to different realizations of the AMOC, which have
been shown to be distinct between CMIP 3 models [Meehl
et al., 2007b]. More generally, differences could be attrib-
uted to different representations of ocean dynamics that can
be affected by factors such as the model’s oceanic grid res-
olution [Swanson et al., 2009].

6.4. Departure From Optimum

[36] In addition to providing context to the 20C3M versus
Obs experiment, the 20C3M versus 20C3M experiment was

used to create the departure from optimum (DFO) metric,
where

DFO = avg(20C3M versus Obs FMs)

— avg(20C3M versus 20C3M FMs). 9)
More intuitively, the DFO can be thought of as the lengths of
the lines in Figure 11b. The DFO indicates continuously
better model performance as it approaches zero, or as the
model’s 20C3M versus Obs performance approaches its
own 20C3M versus 20C3M performance.

[37] The DFO is relative in the sense that models are
scored in relation to their own optimum FM expectations on
the basis of their 20C3M versus 20C3M experiment. Phys-
ically, the DFO handicaps model performance on the basis
of the amount of unforced variability present in each model.
If a given model had a high average FM for the 20C3M
versus 20C3M experiment (e.g., model 8), then this model
incorporated a relatively high amount of unforced IMD
variability in its representation of twentieth century climate
compared with other models. Accordingly, the expectation
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Figure 12. Model comparison summary chart illustrating where statistically distinguishable model-
model comparisons (in the 20C3M versus Obs experiment) were also characterized by the lower-ranking
model (in numerical value, e.g., 1 is ranked lower than 2) achieving a lower DFO. The Y’s indicate that the
lower-ranked model also had a lower DFO than the higher-ranked model, while the N’s indicate that the
higher-ranked model had a lower DFO. As an example, the model ranked 3rd was found to be statistically
better than the models ranked 7th—12th in the 20C3M versus Obs experiment, but model 3 only had a

lower DFO than the models ranked 10th—12th.

that this model could reproduce observed IMD temperature
variability via the inclusion of external radiative forcings
should be reduced. Alternatively, if a given model had a low
average FM for the 20C3M versus 20C3M experiment (e.g.,
model 11) then this model incorporated a relatively low
amount of unforced IMD variability and thus the model
could be expected to reproduce more of the observed IMD
variability using only external radiative forcings.

[38] DFOs for each model are shown in Figure 1lc.
Models that tended to score better in the absolute sense by
performing better in the 20C3M versus Obs experiment also
tended to produce better DFOs. In particular, the top two
ranked models in the 20C3M versus Obs experiment were
also the top two ranked models in the DFO metric. Addi-
tionally, the three bottom ranked models (in terms of the
20C3M versus Obs experiment) had DFOs ranked in the
bottom three as well. This suggests that performance in
the 20C3M versus Obs experiment was not heavily biased
against models with intrinsically more unforced variability,
and it corroborates the ranking based on the 20C3M versus
Obs experiment alone. However, the DFO does illustrate
that the influence of unforced variability should be consid-
ered when attempting to rank uninitialized models in their
ability to reproduce observations. For instance, the models
ranked 3rd to 5th in the 20C3M versus Obs experiment were
outperformed in DFO by the models ranked 6th to 8th in the
20C3M versus Obs experiment. This was a result of the
models ranked 3rd to 5th containing a lower amount of
unforced variability, which effectively raised the expecta-
tions that they could reproduce observed patterns.

[39] The fact that every model had a positive DFO dem-
onstrated that there is ample room for improvement in model
performance. This does not necessarily mean that the
improvement should be achieved by lowering the 20C3M
versus Obs FMs to be in closer agreement with the 20C3M
versus 20C3M FMs. It could very well be the case that these
models systematically underestimate the amount of unforced
variability in the climate system (as has been suggested by

Swanson et al. [2009]). In this case, lower DFOs could be
achieved through the raising of the 20C3M versus 20C3M
FMs.

6.5. Combining 20C3M Versus Obs and the DFO

[40] Because the 20C3M versus Obs experiment and the
DFO results do not produce identical model rankings,
assessment of model performance relative to other models
can be ambiguous. We would recommend that to be confi-
dent that a given model is performing better than another
model, it should have a lower mean 20C3M versus Obs FM
(at a statistically significant level), and it should also have a
lower DFO. Figure 12 illustrates where this has occurred by
indicating which of the statistically distinguishable model-
model comparisons (in the 20C3M versus Obs experiment
shown in Figure 7) were also characterized by the lower-
ranking model (in terms of numerical value) having a lower
DFO. Of the 35 statistically distinguishable model-model
comparisons shown in Figure 7, 28 comparisons passed this
additional constraint that the lower-ranking model have a
lower DFO. In these 28 cases, we can be reasonably sure that
the models being compared were characterized by distinct
differences in skill.

[41] One potential explanation for the distinctions in
model performance seen above is associated with differences
in the incorporated external forcings. Much of the hemi-
spheric-scale decadal climate variability of the past
1,000 years has been a result of solar and volcanic forcing
[Crowley, 2000]. These two forcings are also thought to
have had an influence over the twentieth century, particu-
larly with regard to early century warming [Heger! et al.,
2003]. All of the top nine ranked models (in both the
20C3M versus Obs experiment as well as the DFO) incor-
porated solar and volcanic variability among their forcings
while the three bottom ranked models did not. This is evi-
dence that twentieth century IMD temperature variability has
been heavily influenced by these two factors. Also, Tett
et al. [2002] attributes a portion of early century warming
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to natural variability associated with the AMOC. AMOC
variability, however, may be externally forced [Ottera et al.,
2010]. Therefore, the degree to which a model can simulate
a realistic AMOC may also contribute to model performance
in this analysis.

[42] Some of the noted differences in performance may
also be attributed to the underlying construction of the
models themselves. However, models that are considered to
be more similar by construction did not necessarily perform
similarly in this analysis. For example, the models ranked
1st, 3rd, 6th, and 9th (in the 20C3M versus Obs experiment)
are considered to be relatively closely related [according to
Masson and Knutti, 2011]. To attribute differences in model
performance exclusively to model construction, it would be
necessary to standardize the external radiative forcings
included in the retrospective simulations.

7. Summary

[43] This work demonstrated that the CMIP 3 models
investigated varied considerably in their capacity to repro-
duce the timing, significance, and location of historical IMD
variability. This was revealed through the process of ranking
models on the basis of their 20C3M versus Obs ensemble
mean FMs and then testing the ensemble distributions for
statistically different levels of performance. A spatiotempo-
ral analysis was employed that allowed for a better under-
standing of the model rankings by identifying distinctions
between higher- and lower-ranked models.

[44] Model ability to reproduce observations was given
context by comparing preindustrial control runs to observa-
tions and by comparing ensemble members within each
model to each other. The former experiment demonstrated
that the inclusion of time-varying radiative forcings did
indeed bring modeled IMD variability into closer agreement
with observations. The latter experiment demonstrated that
model performance was not at its theoretical optimum. This
second experiment also allowed for a performance metric to
be devised that assessed model skill relative to the degree of
internal variability inherent in each model. The “departure
from optimum” metric, in conjunction with the original
20C3M versus Obs metric, were then combined to highlight
considerable distinctions in model performance.

[45] Because the external radiative boundary forcings
differed between the models, differences in model perfor-
mance could not be attributed exclusively to model con-
struction. In particular, it appears that models must include
solar and volcanic forcing in order to have a realistic chance
of reproducing observed IMD variability over the twentieth
century. Nevertheless, certain model/forcing combinations
were found to outperform other model/forcing combinations
by a wide margin in both the 20C3M versus Obs and the
DFO metric. Therefore, future projections of temperature
change, based on a given radiative forcing trajectory, may
see an improvement in predictive power if they are asym-
metrically weighted toward the better performing model/
forcing configurations, as revealed by these two metrics.

[46] These results, however, do come with a number of
caveats. Most importantly, it is unknown if a similar ranking
would have been achieved if the entirety of Earth’s surface
were included in the spatial domain or if the spatial resolu-
tion had been altered. Additionally, when modeled and

BROWN ET AL.: TEMPERATURE VARIABILITY IN CMIP 3 MODELS

D11116

observed IMD variability differed, it was assumed that the
model was in error, when in reality it was possible that the
observations themselves were inaccurate. Finally, the rank-
ing of models was complicated by the reality that each
model included different estimates of historical radiative
boundary forcings as well as a different number of ensemble
members. Despite these uncertainties, our results demon-
strate a useful methodology for comparing model ability to
simulate IMD variability that may be helpful in upcoming
model assessments.
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