122 research outputs found

    A description of the GABAergic neurons and axon terminals in the motor nuclei of the cat thalamus.

    Get PDF
    The GABA neurons and their processes in the cat motor thalamic nuclei were identified and studied with glutamic acid decarboxylase (GAD) immunocytochemistry at both the light and electron microscopic levels. The three nuclei that comprise the motor thalamus, ventral anterior (VA), ventral medial (VM), and ventral lateral (VL), each displayed a characteristic distribution pattern of GAD-positive structures that was consistent with their afferent and intrinsic neuronal organization. All three thalamic nuclei displayed a population of small, GAD-positive cells the dendrites of which contained synaptic vesicles and participated in complex synaptic arrays such as serial synapses, triads, and glomeruli. Based on their ultrastructural features, these GAD-containing cells were identified as local circuit neurons. In contrast, the larger, GAD-negative cells were presumed to be the thalamocortical projection neurons. The axons of GAD-positive local circuit neurons could not be identified in these preparations. The number of GAD-positive dendrites in the neuropil was different for the three thalamic nuclei. In the VA and VM, the GAD-positive dendrites were numerous and formed symmetric synapses with dendrites of GAD-negative cells, mainly in association with corticothalamic boutons. Within VL, the GAD-containing dendrites were more numerous than in VA and VM and formed synapses at influential locations on presumed thalamocortical projection neurons, such as bases of primary dendrites, and bifurcation sites of primary and secondary dendrites. The VA and anterolateral VM nuclei that receive inhibitory GABAergic afferents from the entopeduncular nucleus and substantia nigra contained the highest concentration of large GAD-positive axon terminals. These boutons contained pleomorphic vesicles and numerous mitochondria and formed symmetric synapses and multiple puncta adherentes with dendrites and somata of presumed thalamocortical projection neurons. The size, ultrastructural features, and distribution of these GAD-positive boutons were similar to those features described for basal ganglia terminals in the motor thalamus of the cat. In addition, similar large-size GAD-positive boutons were observed in the medial VM, which receives basal ganglia afferents exclusively from the substantia nigra. The concentration of these terminals in medial VM along the dendrites of thalamocortical projection neurons was much less than that in VA and anterolateral VM. The VL nucleus which lacks basal ganglia input did not contain any large GAD-positive boutons.(ABSTRACT TRUNCATED AT 400 WORDS

    A cortical motor nucleus drives the basal ganglia-recipient thalamus in singing birds

    Get PDF
    The pallido-recipient thalamus transmits information from the basal ganglia to the cortex and is critical for motor initiation and learning. Thalamic activity is strongly inhibited by pallidal inputs from the basal ganglia, but the role of nonpallidal inputs, such as excitatory inputs from cortex, remains unclear. We simultaneously recorded from presynaptic pallidal axon terminals and postsynaptic thalamocortical neurons in a basal ganglia–recipient thalamic nucleus that is necessary for vocal variability and learning in zebra finches. We found that song-locked rate modulations in the thalamus could not be explained by pallidal inputs alone and persisted following pallidal lesion. Instead, thalamic activity was likely driven by inputs from a motor cortical nucleus that is also necessary for singing. These findings suggest a role for cortical inputs to the pallido-recipient thalamus in driving premotor signals that are important for exploratory behavior and learning.National Institutes of Health (U.S.) (Grant R01DC009183)National Institutes of Health (U.S.) (Grant K99NS067062)Damon Runyon Cancer Research Foundation (Postdoctoral Fellowship)Charles A. King Trust (Postdoctoral Fellowship

    Thalamic neuromodulation and its implications for executive networks

    Get PDF
    The thalamus is a key structure that controls the routing of information in the brain. Understanding modulation at the thalamic level is critical to understanding the flow of information to brain regions involved in cognitive functions, such as the neocortex, the hippocampus, and the basal ganglia. Modulators contribute the majority of synapses that thalamic cells receive, and the highest fraction of modulator synapses is found in thalamic nuclei interconnected with higher order cortical regions. In addition, disruption of modulators often translates into disabling disorders of executive behavior. However, modulation in thalamic nuclei such as the midline and intralaminar groups, which are interconnected with forebrain executive regions, has received little attention compared to sensory nuclei. Thalamic modulators are heterogeneous in regards to their origin, the neurotransmitter they use, and the effect on thalamic cells. Modulators also share some features, such as having small terminal boutons and activating metabotropic receptors on the cells they contact. I will review anatomical and physiological data on thalamic modulators with these goals: first, determine to what extent the evidence supports similar modulator functions across thalamic nuclei; and second, discuss the current evidence on modulation in the midline and intralaminar nuclei in relation to their role in executive function

    Consensus Paper: Towards a Systems-Level View of Cerebellar Function: the Interplay Between Cerebellum, Basal Ganglia, and Cortex

    Get PDF
    • 

    corecore