419 research outputs found

    An informed thought experiment exploring the potential for a paradigm shift in aquatic food production

    Full text link
    The Neolithic Revolution began c. 10000 years ago and is characterised by the ultimate, near complete transition from hunting and gathering to agricultural food production on land. The Neolithic Revolution is thought to have been catalysed by a combination of local population pressure, cultural diffusion, property rights and climate change. We undertake a thought experiment that examines trends in these key hypothesised catalysts and patters of today to explore whether society could be on a path towards another paradigm shift in food production: away from hunting of wild fish towards a transition to mostly fish farming. We find similar environmental and cultural pressures have driven the rapid rise of aquaculture, during a period that has now been coined the Blue Revolution, providing impetus for such a transition in coming decades to centuries. We also highlight the interacting and often mutually reinforcing impacts of 1)technological and scientific advancement, 2)environmental awareness and collective action and 3)globalisation and trade influencing the trajectory and momentum of the Blue Revolution. We present two qualitative narratives that broadly fall within two future trajectories: 1)a ubiquitous aquaculture transition and 20commercial aquaculture and fisheries coexistence. This scenarios approach aims to encourage logical, forward thinking, and innovative solutions to complex systems dynamics. Scenario-based thought experiments are useful to explore large scale questions, increase the accessibility to a wider readership and ideally catalyse discussion around proactive governance mechanisms. We argue the future is not fixed and society now has greater foresight and capacity to choose the workable balance between fisheries sand aquaculture that supports economic, environmental, cultural and social objectives through combined planning, policies and management

    To Achieve Big Wins for Terrestrial Conservation, Prioritize Protection of Ecoregions Closest to Meeting Targets

    Get PDF
    Most of the terrestrial world is experiencing high rates of land conversion despite growth of the global protected area (PA) network. There is a need to assess whether the current global protection targets are achievable across all major ecosystem types and to identify those that need urgent protection. Using recent rates of habitat conversion and protection and the latest terrestrial ecoregion map, we show that if the same approach to PA establishment that has been undertaken over the past three decades continues, 558 of 748 ecoregions (ca. 75%) will not meet an aspirational 30% area protection target by 2030. A simple yet strategic acquisition plan that considers realistic futures around habitat loss and PA expansion could more than double the number of ecoregions adequately protected by 2030 given current funding constraints. These results highlight the importance of including explicit ecoregional representation targets within any new post-2020 global PA target

    Measurement of the Depth of Maximum of Extensive Air Showers above 10^18 eV

    Get PDF
    We describe the measurement of the depth of maximum, Xmax, of the longitudinal development of air showers induced by cosmic rays. Almost four thousand events above 10^18 eV observed by the fluorescence detector of the Pierre Auger Observatory in coincidence with at least one surface detector station are selected for the analysis. The average shower maximum was found to evolve with energy at a rate of (106 +35/-21) g/cm^2/decade below 10^(18.24 +/- 0.05) eV and (24 +/- 3) g/cm^2/decade above this energy. The measured shower-to-shower fluctuations decrease from about 55 to 26 g/cm^2. The interpretation of these results in terms of the cosmic ray mass composition is briefly discussed.Comment: Accepted for publication by PR

    Operations of and Future Plans for the Pierre Auger Observatory

    Full text link
    Technical reports on operations and features of the Pierre Auger Observatory, including ongoing and planned enhancements and the status of the future northern hemisphere portion of the Observatory. Contributions to the 31st International Cosmic Ray Conference, Lodz, Poland, July 2009.Comment: Contributions to the 31st ICRC, Lodz, Poland, July 200

    The Pierre Auger Observatory III: Other Astrophysical Observations

    Full text link
    Astrophysical observations of ultra-high-energy cosmic rays with the Pierre Auger ObservatoryComment: Contributions to the 32nd International Cosmic Ray Conference, Beijing, China, August 201

    Anisotropy and chemical composition of ultra-high energy cosmic rays using arrival directions measured by the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Collaboration has reported evidence for anisotropy in the distribution of arrival directions of the cosmic rays with energies E>Eth=5.5×1019E>E_{th}=5.5\times 10^{19} eV. These show a correlation with the distribution of nearby extragalactic objects, including an apparent excess around the direction of Centaurus A. If the particles responsible for these excesses at E>EthE>E_{th} are heavy nuclei with charge ZZ, the proton component of the sources should lead to excesses in the same regions at energies E/ZE/Z. We here report the lack of anisotropies in these directions at energies above Eth/ZE_{th}/Z (for illustrative values of Z=6, 13, 26Z=6,\ 13,\ 26). If the anisotropies above EthE_{th} are due to nuclei with charge ZZ, and under reasonable assumptions about the acceleration process, these observations imply stringent constraints on the allowed proton fraction at the lower energies

    Highlights from the Pierre Auger Observatory

    Full text link
    The Pierre Auger Observatory is the world's largest cosmic ray observatory. Our current exposure reaches nearly 40,000 km2^2 str and provides us with an unprecedented quality data set. The performance and stability of the detectors and their enhancements are described. Data analyses have led to a number of major breakthroughs. Among these we discuss the energy spectrum and the searches for large-scale anisotropies. We present analyses of our Xmax_{max} data and show how it can be interpreted in terms of mass composition. We also describe some new analyses that extract mass sensitive parameters from the 100% duty cycle SD data. A coherent interpretation of all these recent results opens new directions. The consequences regarding the cosmic ray composition and the properties of UHECR sources are briefly discussed.Comment: 9 pages, 12 figures, talk given at the 33rd International Cosmic Ray Conference, Rio de Janeiro 201

    The Fluorescence Detector of the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Observatory is a hybrid detector for ultra-high energy cosmic rays. It combines a surface array to measure secondary particles at ground level together with a fluorescence detector to measure the development of air showers in the atmosphere above the array. The fluorescence detector comprises 24 large telescopes specialized for measuring the nitrogen fluorescence caused by charged particles of cosmic ray air showers. In this paper we describe the components of the fluorescence detector including its optical system, the design of the camera, the electronics, and the systems for relative and absolute calibration. We also discuss the operation and the monitoring of the detector. Finally, we evaluate the detector performance and precision of shower reconstructions.Comment: 53 pages. Submitted to Nuclear Instruments and Methods in Physics Research Section
    • 

    corecore