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Feeding a growing, increasingly affluent population while limiting environmental pressures of food produc-
tion is a central challenge for society. Understanding the location and magnitude of food production is key
to addressing this challenge because pressures vary substantially across food production types. Applying
data and models from life cycle assessment with the methodologies for mapping cumulative environmental
impacts of human activities (hereafter cumulative impact mapping) provides a powerful approach to spatially
map the cumulative environmental pressure of food production in a way that is consistent and comprehen-
sive across food types. However, these methodologies have yet to be combined. By synthesizing life cycle
assessment and cumulative impact mapping methodologies, we provide guidance for comprehensively and
cumulatively mapping the environmental pressures (e.g., greenhouse gas emissions, spatial occupancy, and
freshwater use) associated with food production systems. This spatial approach enables quantification of
current and potential future environmental pressures, which is needed for decision makers to create more
sustainable food policies and practices.
Introduction
The global food system imposes significant pressure on our

environment. These pressures are generated by the inputs, pro-

cesses, and outputs required to produce different food types

and are associated with every stage of production, processing,

distribution, consumption, and wastage.1 Currently, food pro-

duction uses around 50% of habitable land2 and 4% of sea

area,3 accounts for about 70% of global freshwater withdrawal,4

and is responsible for 26% of all anthropogenic greenhouse gas

(GHG) emissions.1 These pressures lead to impacts on natural

ecosystems, degrading and destroying habitats that drive biodi-

versity declines5 and undercutting the sustainability and produc-

tion potential of the entire food production system.6,7 These ef-
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fects are expected to intensify as the human population and

per capita consumption continue to grow.8

Both reducing food’s environmental footprint and providing

safe, nutritious, and sufficient food to humanity are central com-

ponents of the United Nations Sustainable Development Goals9

and require comprehensive and spatially explicit understanding

of the cumulative pressures and impacts of all food types across

the production process. Maps of individual environmental pres-

sures from specific food sectors exist,10,11 but cumulative maps

are currently lacking.12 Mapping the location and magnitude of

the cumulative environmental footprint of food production is

needed to identify hotspots of environmental pressures and po-

tential inefficiencies (i.e., environmental pressure per unit
, July 24, 2020 ª 2020 The Author(s). Published by Elsevier Inc. 65
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Box 1. Glossary

As in many disciplines, numerous terminologies—often conflicting or interchangeable—have been used in the context of environ-

mental impacts. Here, we suggest a four-step structure, based on the terminology described by Judd et al.:13 pressures, path-

ways, impacts, and pressures per unit production.

Environmental pressures (Figure 1, step 1), ‘‘life cycle inventory (LCI) results’’ in LCA14 and ‘‘stressors’’ or ‘‘anthropogenic drivers’’

in cumulative impact assessments,15,16 are the consumptive inputs (e.g., land, water), processes and outputs (e.g., excess nutri-

ents, GHG emissions) associated with producing food. Pressures can be highly variable across space and time and depend on the

type of food being produced and the method of production. For example, fertilization contributes to the environmental pressure of

eutrophication potential and nitrous oxide emissions, but the magnitude of the contribution will depend on the type of fertilizer and

the timing and method of application.17

Environmental pathways (Figure 1, step 2) refer to the mechanisms through which pressures contribute to resulting impacts and

are not necessarily constrained to the site of production. In LCAs, pathways are often referred to as the ‘‘midpoint impact cate-

gory.’’14 For example, fertilization results in the environmental pressures (Figure 1, step 1) of phosphorus and nitrogen inputs

into the environment that, in turn, might cause the environmental pathway (Figure 1, step 2) of eutrophication (i.e., increased

nutrient pollution) at the farm level, or perhaps much further downstream through infiltration into waterways.18 Importantly,

although the conversion between pressures and pathways is typically assumed to be linear, these relationships could be highly

complex and exhibit both positive and negative feedbacks.13,19

Environmental impacts of food production, or ‘‘endpoint impact category’’ in LCA terminology, depend on the environmental path-

ways and the sensitivity (i.e., vulnerability) of an environmental or societal receptor to a given pathway (e.g., population, habitat, or

other entity(ies) that would be affected if exposed to the given pressure(s)).14,15,16 Thus, the product of these factors describes the

expected consequence(s) of a pressure for people and/or nature (Figure 1, step 3). For example, the abstraction of large amounts

of groundwater (higher environmental pressure) from a heavily modified, species-poor river in a wet climate (lower sensitivity),

might have relatively lower environmental impacts than smaller abstraction (lower environmental pressure) from an unmodified,

species-rich river in a relatively dry climate (higher sensitivity). Notably, impacts on humans can be measured by using the

same overall approach by considering the social or health vulnerability of a human population to an environmental pathway based

on intrinsic (e.g., age, existing health conditions, genetics) and extrinsic (e.g., socioeconomic vulnerability, access to health care)

variables.20,21 Importantly, there might be temporal delays in impacts (decades or longer) because of legacies of historical accu-

mulation (e.g., delayed release by aquifers and sediments).

Finally, environmental pressures, pathways, or impacts per unit production (Figure 1, step 4) can be calculated by standardizing

environmental pressures, pathways, or impacts by a common unit of food system production (e.g., calories, grams of protein, or

servings). Standardization allowsmeaningful comparisons between locations and across food types in relation to production levels

(Box 3). Without considering production levels, low overall environmental pressures because of low production levels can appear

to be less environmentally damaging within the context of the global food system than high-production, high-pressure systems.

However, the environmental pressures per unit production might be higher. Calculating and spatially mapping pressures per unit

production helps to uncover practices that are relatively more efficient and elucidate where specific policies and regulations can

produce the biggest benefits through reducing the environmental pressure per unit production. Importantly, both pressures and

pressures per unit production should be considered together to account for these potential trade-offs.
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production, Box 1) to inform sustainable policies and practices.

Further, accounting for cumulative pressures arising from food

production allows evaluation of the most problematic pressures,

including those that could lead to unacceptable or avoidable

environmental outcomes.

A key reason for this knowledge gap is the boundaries be-

tween academic disciplines that have developed methodologies

for different aspects of comprehensive impact assessments: life

cycle assessment (LCA) and cumulative impact mapping. LCA

aims to understand the environmental aspects and potential im-

pacts throughout a product’s complete life cycle (i.e., cradle to

grave)22 from an industrial ecology perspective. Recent LCA

meta-analyses have clearly demonstrated that not all food is

equivalent in terms of environmental pressure per unit produc-

tion, providing insight into the opportunities and risks within

the global food system and allowing for the development of

generalized recommendations for more sustainable diets.1,23,24

Methods for conducting regionalized LCAs have recently been
66 One Earth 3, July 24, 2020
proposed,25 but most LCAs do not describe the fine-scale

spatial distribution of environmental pressures (total and per

unit production),26–28 which is critical for predicting impacts on

ecosystems and improving sustainability. Furthermore, most

food LCAs have focused on one or a few relatively well-studied

production types and environmental pressures12 and usually

report results per individual pressure at global or national scales.

Results from LCAs that use spatially disaggregated input data,

such as land-use change, soil erosion, and/or water scarcity,

often differ sharply from non-spatially explicit examples,14,29–33

highlighting the importance of considering environmental pres-

sures at finer scales.

Largely independent of the LCA literature, conservation scien-

tists have also improved our ability to combine and map pres-

sures and impacts of human activities on the environment across

spatial scales.12,15,16 Similar to LCA, a well-documented set of

best practices and assumptions for spatial accounting that

combine multiple sources of pressure have emerged, including



Figure 1. Conceptual Diagram of the Four
Steps in Environmental Impact Assessment
of Food Production
These include (1) pressures, (2) pathways, (3) im-
pacts, and (4) pressures per unit production.
Sensitivity scores represent exemplary low (0) to
high (3) sensitivity values in relation to each
pathway. Boxes represent examples and are thus
not comprehensive. Italicized words represent the
corresponding terminology in LCA analyses.
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methods to translate these pressures into impacts.19,34,35 How-

ever, unlike LCAs, these mapping assessments rarely account

for the cumulative environmental footprint across multiple steps

of a production cycle (e.g., processing, transportation, and

packaging), which is essential in the context of food production

where each stage of the process can impose different environ-

mental pressures with unique footprints (e.g., through feed link-

ages; see Note S1). In addition, estimates of the environmental

pressures of food production need to be scaled by a production

metric (per unit) to assess efficiency, a standardizing step in

LCAs that is less common in cumulative impact mapping.

Thus, to ensure that food production policies are sensitive to

location-specific contexts, it is necessary to merge the spatially

explicit nature of cumulative impact mapping with the standard-

ization and life stage approach of LCAs.

The ultimate goal of LCA and cumulative impact mapping

methodologies is to measure the environmental pressures and

associated pathways of food production to better understand re-
sulting impacts on the environment and society (Box 1 and

Figure 1). The challenges of validating and harmonizing data

across vastly different production systems and spatiotemporal

scales requires a method for spatially quantifying pressures

and translating them to pathways and finally impacts. Here, we

introduce an approach for assessing and mapping the cumula-

tive environmental pressures (total and per unit of production)

of the global food production system by integrating LCA and cu-

mulative impact mapping methodologies. We outline the overall

process, quantitative tools, and key considerations necessary

for defining and incorporating multiple food production cate-

gories and environmental pressures. These include accounting

for linkages between food systems (e.g., through feed), filling

data gaps, and spatially reporting comparative and cumulative

results. To advance potential applications of this approach to

food systems, we also suggest appropriate methods for trans-

lating pressures into impacts. To illustrate our proposedmethod-

ology, we present an example using simulated data for three
One Earth 3, July 24, 2020 67



ll
OPEN ACCESS Perspective
environmental pressures and four food types drawn from both

land and sea.

Mapping Environmental Pressures
We describe the steps necessary for quantifying and spatially

mapping the comparative and cumulative pressures (total and

per unit production) of food production per grid cell. In practice,

implementation of these steps is complex, requiring numerous

decisions and assumptions,19 particularly in the context of

food systems and spatially explicit analyses (see Accounting

for Uncertainty section).

Definition of Goal and Scope

The goal and scope of an assessment influences the compar-

isons that can be made among food systems and dictates

the data needs. Defining the goal helps determine the breadth

and intended use of an analysis, whereas the scope determines

the system boundary and level of detail,22 which will vary

among practitioners on the basis of geographic location and

food types of interest. We recommend viewing this as an itera-

tive process where data availability feeds back into study

design.

A hierarchical system (Figure S1) provides flexibility when cat-

egorizing food types and pressures that allows for analyses at

various classification scales: among sectors (e.g., mariculture

versus fisheries versus beef), or among practices within sectors,

which can be highly variable. For example, the relative water use

of beef varies considerably between grazing and feedlot raised

animals36 and the environmental pressures of aquaculture vary

greatly among fed and unfed cultivated species.24,37 As a conse-

quence, comparing the impact of producing aquaculture, wild

fish, and beef is only meaningful if these differences in pressures

among and within sectors are accounted for.

Similarly, environmental pressures can be categorized in a va-

riety of ways that can alter assessment outcomes and reduce

comparability between assessments. For example, atmospheric

emissions canbe combined into a single pressure (i.e.,measured

according to their GHG effect by converting various gases to

units of CO2-equivalent by using global warming potential) or

kept separated as individual gases to track other aspects of their

impact. A hierarchical approachcanbehelpful in identifyingpres-

sures that are shared across food production types, but it is

important to select a consistent level of subdivision to avoid over-

emphasis of certain production typeswhencumulativepressures

are calculated. For food production types and pressures,

creating comprehensive lists permits explicit reporting on what

has and has not been used in an analysis and why (e.g., data lim-

itations, see section on Accounting for Uncertainty).

Inventory Analysis

Once the focal food production types and pressures have been

identified, there are three types of data needed to cumulatively

map food production pressures: (1) spatial occupancy, (2) pres-

sure values, and (3) production levels (to calculate pressures per

unit production).

Mapping pressures requires knowledge of where the identi-

fied focal food types are produced (i.e., determining their

spatial occupancy). International organizations (e.g., FAO)

and research initiatives (e.g., MapSPAM) now provide spatial

data for many food production types, particularly terrestrial

foods. The geographic detail of terrestrial agricultural systems
68 One Earth 3, July 24, 2020
(e.g., crop and domesticated livestock production) and com-

mercial marine fisheries is not perfect but is constantly

improving due to technological innovations, satellite imagery,

and spatial models.38,39 Knowledge of the spatial distribution

of less visible and/or studied systems (e.g., artisanal fishing,

aquaculture, and bushmeat hunting12) is markedly less

comprehensive.

In the absence of spatial occupancy data, many efforts to date

have relied on an environmental suitability approach to predict

where food production is most likely to occur in relation to envi-

ronmental and economic proxies.16,40,41 Suitability mapping can

significantly increase the scope of an assessment by increasing

the types of foods that can be included. However, combining

suitability maps with production footprint information will inevi-

tably introduce error into the results: environmental pressures

will be diluted or extended where suitability maps overestimate

spatial extent of production and concentrated where underesti-

mated. To minimize the potential for false-positive and false-

negative errors misdirecting policy actions or limited funds,42

the use of suitability maps in this context requires careful thought

and transparent reporting (see Accounting for Uncertainty

section).

The next step is determining the environmental pressure

values for each food type. LCA or environmental assessment

models often provide data and methods for quantifying individ-

ual pressure data (e.g., the Global Livestock Environmental

Assessment Model32), supplemented with modeling based on

data from the primary scientific literature. Understanding the

characteristics of these diverse data sources is critical for aggre-

gating data and avoiding double counting of pressures. For

example, LCA results are often ‘‘cradle to grave’’, whereas the

desired goal and scope of a study might only be ‘‘cradle to

farm gate’’ or some other variation. It might be possible to disag-

gregate LCA results into different stages of production, and the

ability to do this, alongside the goals and scope of a study, will

determine the usability and comparability of different data sour-

ces. Importantly, to integrate LCA and cumulative impact map-

ping, synthesis of farm-level LCAs is necessary for aggregating

production types to comparable scales and spatially mapping

results. This can be difficult because LCAs often address the

same products in different ways. However, these data are

becoming increasingly available,1,24,32 making it possible to

combine these two approaches.

The comparability of individual environmental pressures

among different food production types and practices is also

important. Land use, for example, has a relatively stationary

and defined distribution that results in some level of ‘‘exclu-

sion’’ of natural landscapes in terrestrial systems. In aquatic

systems, on the other hand, food production practices (e.g.,

fishing and fish farming) can be more dynamic and mobile.

This leads to fluctuating and evolving levels of habitat modifi-

cation pressures on the environment on a spectrum from

‘‘subtraction’’ of resources (e.g., selective removal of species)

to ‘‘exclusion’’ of a natural habitat, which is more similar to

land use in terrestrial systems.15,43 In these instances, pro-

duction methods can be weighted based on relative distur-

bance to obtain occupancy and disturbance pressure values

that reflect these differences. In the case that LCA data or

environmental models are not available for a given pressure,
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the feasibility of modeling that pressure must be carefully

evaluated (see Accounting for Uncertainty section).

Determining cumulative environmental pressures per unit pro-

duction is important to be able to holistically and fairly compare

across food production types and locations. To do this, some

measure of production is required. Various production metrics

have been used to calculate pressures per unit production in

the context of LCA, including measures of weight (per tonne, ki-

logram, etc.), nutritional content (e.g., per kilocalorie, per gram

protein, potential number of people fed per hectare44), or portion

size (100 g, serving size, typical unit of product such as a loaf of

bread, etc.). Given that comparative results can vary significantly

on the basis of the chosen production metric, careful consider-

ation of the scope, scale, and intended goal of the assessment

is critical to determine which metric of production is best suited

for any given analysis. For example, an analysis aimed at inform-

ing socioeconomic policies or dietary recommendations might

choose production metrics in relation to the potential number

of people fed per hectare or portion size.44 In contrast, those

aimed at developing understanding within the production sector

(e.g., farmers, harvesters, governments) might focus on metrics

commonly used in regional or national statistics, such as tonnes

or kilograms.2

As with the spatial extent of production, fine-scale data on

production levels are often lacking but are important for targeting

management and policy recommendations. This is particularly

the case for diverse food production systems, like fisheries,

which contain thousands of different species that vary in time

and space.45 In most cases, production statistics are spatially

and/or taxonomically aggregated at the regional or national level,

providing useful insight into broad patterns.11 However, for these

purposes, production data need to be distributed at a finer scale.

The simplest approach for allocating production when the

actual distribution is unknown is to distribute national-level pro-

duction data evenly across the total extent of production. This

can help capture spatial variation between, but not within, the

original reporting units (e.g., countries). This renders estimates

of environmental pressures per unit production at national scales

largely uninformative and hinders policy decisions at more local-

ized scales. A more nuanced approach is to combine a modified

species distribution modeling approach coupled with spatial

production allocation models.39,46,47 If data are available, pro-

duction can be distributed in relation to farm distribution, yields,

and/or stocking rates while accounting for any confounding

factors (e.g., the higher mortality that can accompany higher

stocking densities48). Alternatively, production can be distrib-

uted proportionally to environmental variables, using simple

rules such as higher river discharge corresponding to more

freshwater aquaculture,16 or through more complex predictive

modeling approaches.39 Such models are invaluable, but can

require significant effort to produce and validate.

Mapping Cumulative Environmental Pressures

To enable cumulative mapping, environmental pressure data

from different food systems must be integrated into a common

framework and scale. There are complex, system-specific con-

siderations for doing this (as discussed above), but the assump-

tions and methodology for bringing together disparate and

complex sources of data for cumulative spatial analyses have

been discussed in the cumulative impact mapping literature
and are largely transferable to food system analysis.15,16,19,49

The most notable difference for adapting previous cumulative

impact mapping techniques to food systems is combining data

not only across various sources of environmental pressure but

also different production types and stages and translating cumu-

lative environmental pressures to pressures per unit production

(e.g., tonnes, nutritional content, etc.).

Spatializing environmental pressures can be done by using

several approaches: pressures can be assigned to (1) the site

at which they are incurred, (2) the site at which the final food

product is produced, or (3) the site of consumption. Mapping

environmental pressures to the site where they are incurred

(i.e., spatially distinguishing between pressures exerted at

the site of feed production and on-farm pressures arising

from production of the final animal product) allows local or

regional decision makers to more directly track and account

for both the localized and global context of production pro-

cesses. For example, water limitation could be a constraint

where feed crops are grown but not where livestock are pro-

duced, and this distinction could be lost if feed and on-farm

livestock pressures are mapped together at the livestock pro-

duction site. At the farm level (i.e., combining on-farm and

feed pressures for animal production to the final animal pro-

duction site), farmers, consumers, and policy makers can bet-

ter understand the combined footprint of the food produced in

that location, allowing for the identification of specific farm

practices that have relatively higher or lower environmental

pressures. Finally, mapping pressures to the place of con-

sumption allows for the assessment of how resource demand

drives environmental pressures (i.e., mapping on-farm and

feed pressures to the place of consumption). Such an

approach could reveal solutions that do not fall solely on pro-

ducers (supply-side approach), but on those creating demand

for production, and potential inequities associated with pres-

sures and products arising from the production of certain

foods (e.g., distribution mode and distance50).

Although each of these approaches tell useful narratives, com-

plex feed and trade dynamics make robust fine-scale spatial ac-

counting difficult (Note S1). For example, it is currently not

possible to explicitly link feed production in a specific cell to an-

imal production in another cell, largely because commodities are

typically pooled before they are traded. Establishing such links is

only currently possible at the national level. We demonstrate

mapping GHG emissions (total and per unit production) for

beef and salmon aquaculture across a theoretical landscape

(discussed below) at both the site at which they are incurred

and the site at which the final food product is produced in

Box 2. We recognize the need to further develop alternative ap-

proaches (e.g., at the site of consumption) for a holistic under-

standing of complex food networks.

Exploring a Hypothetical Case
We present a general framework for standardizing and

combining multiple environmental pressures and production

types into a single cumulative environmental pressure (total

and per unit production) metric below, with an illustrative

example in Box 3 and the Supplemental Information (Experi-

mental Procedures and Tables S1–S6). The data and code to

reproduce our example can be found at https://knb.
One Earth 3, July 24, 2020 69
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Box 2. Allocating Pressures between Animal and Feed Production Sites

Comprehensive and fair comparisons of the environmental footprint of food requiresmapping environmental pressures, which can

take different forms depending on the location where pressures are mapped (e.g., at the site where pressures are incurred, map-

ping feed and on-farm animal pressures separately to their respective production sites; figure panels A and D below) or at the farm

level (mapping feed and on-farm pressures together to the final animal production site; figure panels B and E below). Further, envi-

ronmental pressures per unit production depict the relative efficiency of different production types based on production levels, and

thus all pressures must be accounted for and mapped to the final animal production site and standardized by a production metric

(figure panels C and F below).

Examples of Mapping GHG Emissions
Thousands of kg CO2 equivalents for beef (A–C) and salmon aquaculture (D–F). We present three approaches: (1) mapping feed and on-farm pressures
separately to the site of feed production and the site of animal production (A andD), (2) mapping feed and on-farm pressures together to the final sites of animal
production (B and E), and (3) mapping pressures per unit production to the final sites of animal production (C and F). The higher density of salmon production
per cell results in higher GHG emission values per cell for salmon than beef (B and E). However, beef has higher GHG emissions per kilogram of production
than salmon across the hypothetical landscape (C and F).

We demonstrate how to account for feed and on-farm environmental pressures by using GHG emissions from beef and salmon

aquaculture (see Experimental Procedures and Tables S1–S5). In this example, beef is fed maize and salmon aquaculture is fed

both maize and fish meal/oil from a small pelagic fishery (see Experimental Procedures and Table S4).

Calculating Feed Pressures from Animal Production
To calculate the pressure from feed inputs, we first calculate the amount of each feed crop in our landscape that is needed (maize

and fish meal/oil from the small pelagic fishery) to produce the amount of the final animal food product (beef and salmon). We

calculate the amount of feed type, Bc;a, needed to produce the amount of fed animal production type a across all cells in our land-

scape n as

Bc;a = ac;aFCRa

Xn

i = 1
Ki;a ; (Equation 1)

where Ki;a is the production (weight) of each fed animal type a in cell i, FCRa is the feed conversion ratio, and a is the proportion of

feed composed of each crop c for animal a (Table S4). We then determine the proportion of total feed crop needed to meet this

demand, Dc;a, as

Dc;a =
Bc;a

Tc

; (Equation 2)

(Continued on next page)
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Box 2. Continued

where Tc is the total production of crop c. We assume that the proportion of each pressure attributed to feed is equal to the pro-

portion of each crop needed for feed (i.e., if 1% of total maize production is used in beef feed, 1%of maize GHG emissions need to

be accounted for in beef GHG emission values). The allocation is done on a mass (kg) basis. The total amount of each pressure

resulting from feed use Fs;a is then

Fs;a = Ps;cDc;a; (Equation 3)

where Ps;c is the total amount of pressure s for feed crop c. In our example, pressure data are already mapped to the origin of pro-

duction (feed and on-farm animal pressures accounted for separately) and thus can be directly used to calculate cumulative pres-

sures. However, to calculate pressures per unit, feed pressures for beef and salmon must be allocated to the site of animal pro-

duction and crop pressures must be adjusted accordingly. Aggregated feed and on-farm stressors at the animal production site

are calculated as

As;a;i = Sa;i

Ps;a + Fs;a

Ps;a

; (Equation 4)

where Sa;i is the on-farm pressure S for animal type a in cell i, which is multiplied by the ratio of total feed Fs;a and on-farm pressure,

Ps;a, to on-farm pressure for each pressure and animal production type. Feed crop cells must also be adjusted to account for pres-

sures being mapped to the final site of animal production based on the amount of crop needed:

As;c;i = Sc;ið1�Dc;aÞ; (Equation 5)

where Sc;i is the on-farm pressure S for feed type c in cell i. See the Experimental Procedures regarding separating feed from on-

farm pressures when a single combined value is reported.
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ecoinformatics.org/view/doi:10.5063/F1PZ575B. We created a

simulated landscape with four food production types (maize,

beef raised on a combination of grass and maize, salmon aqua-

culture, and a small pelagic fishery) and two natural habitat types

(forest and water) (Figure 2A), and considered three pressures

(area occupancy and disturbance, Figure 2B; GHG emissions,

Figure 2C; and freshwater withdrawal, Figure 2D). We chose to

use a theoretical dataset based on realistic values from Poore

and Nemecek1 to explicitly demonstrate several of the key and

complex considerations in a single example, such as the need

to account for differences in the disturbance associated with

terrestrial agriculture and mobile fisheries in occupancy mea-

sures (Experimental Procedures). We map environmental pres-

sures to the site where they are incurred and environmental pres-

sures per unit production to the final site of animal production so

that production (kg) can be easily linked with pressure values.

Our hypothetical example helps to (1) create focus and transpar-

ency of the process and (2) allow better interpretation and iden-

tification of flexibility in our assumptions for the ultimate applica-

tion to real world data.

Once cumulative pressures (total and per unit production) are

spatially assessed, pressure drivers and their spatial and tempo-

ral trends can be explored to reveal environmental footprints and

linkages that are both intuitive and unexpected, and ultimately

reduce the environmental demands of food production. For

instance, in our example, maize has the highest total environ-

mental pressures across GHG emissions and freshwater use

because of its high total production (Table S6). A significant

portion of maize production is used for beef and salmon feed

in our example (Table S4). The feed pressures become clear

when exploring the differences of mapping pressures to where

they are incurred versus the final animal production site (Box 2,
figure panel A versus B and D versus E). In another example,

although salmon aquaculture is known to have relatively low

environmental pressures per unit production compared with

that of beef,1,24 when assessed spatially, salmon aquaculture

has higher total GHG and freshwater withdrawal per grid cell.

This is because salmon has an average yield of 12,840 kg per

ha, nearly 400 times higher than beef (average yield of 33 kg

per ha) (Table S6). These differences in yield lead to a higher cu-

mulative pressure for salmon aquaculture (an average of 1.16 per

ha) compared with beef (1.0) despite the far higher average cu-

mulative pressure per unit production for beef than salmon

(0.27 and 0.01 per kg, respectively) across our example land-

scape. In other words, because it is possible to produce a lot

more salmon in a single grid cell, the total pressure within that

cell is greater for salmon but still more efficient per kilogram of

production than beef.

Translated to the real world, these differences have enormous

implications for sustainable food policies: although shifts tomore

efficient foods and productionmeans are vital for overall sustain-

ability, localized pressures can be high even from these more

efficient systems. Further, low production systems might look

promising in terms of total cumulative environmental pressures

but could result in a larger overall footprint (i.e., displacement

of food production) in order to meet production demands.53

Considering environmental pressures in both total and per unit

production is critical for a comprehensive understanding of the

food landscape.

Although our hypothetical example cannot be used to inform

policy, several patterns emerge that exemplify the potential of

our approach for policy development. For example, by quanti-

fying and mapping cumulative environmental pressures, hot-

spots of environmental pressures can be identified (darker colors
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Box 3. Calculating Cumulative Pressures (Total and per Unit)

Here, we demonstrate the general approach of calculating cumulative pressures acrossmultiple production and pressure types by

using the theoretical example described in Box 2 and the Supplemental Information (Experimental Procedures, Figure S2, and

Tables S1–S5). We include three pressures: GHG emissions, spatial occupancy and disturbance, and freshwater withdrawal.

Once data on all available and relevant pressures have been collected, it is necessary to aggregate individual pressureswithin each

grid cell. Importantly, at this stage, raster data of each environmental pressure are rescaled from native units to values on a com-

mon scale (usually [0. 1]). For calculating environmental pressures per unit, environmental pressure data are first divided by total

production from all food types within a cell and then rescaled by a scaling value.

Many potential rescaling functions exist (e.g., MinMax observed, MinMax possible, MinMax log transform), but global cumulative

mapping assessments have largely rescaled data using a quantile approach.15 Rescaling by the upper quantile of the data distri-

bution reduces the effect of outliers (which can drive patterns in MinMax transformations). The specific quantile should be based

on the sample size, but the 99.99th percentile has been used in other cumulative mapping approaches with a large amount of cells

(e.g., global, ~1 km resolution).15 In using this approach, all rescaled values > 1 should be adjusted to equal 1.

Once the environmental pressure data have been rescaled, they can then be summed within each cell to produce a cumulative

pressure, IC;i, or pressure per unit production, EC;i, value (Figures 3A and 3B):

IC;i =
Xm

s= 1
Rs;i; (Equation 6)

EC;i =
Xm

s= 1
Gc;i; (Equation 7)

where Rs;i andGc;i are the rescaled values (between 0 and 1) of food production pressure, s, or pressures per unit production, c, in

cell i. Cumulative pressure scores should range between 0 andm (the total number of pressures being summed). Optionally, pres-

sures can be weighted relative to their perceived importance before they are summed. Notably, ISO LCIA standards and cumu-

lative mapping exercises consider normalization and weighting of pressures as ‘‘optional’’ components, because they are not

objective. It is important to consider whether normalization and/or weighting are necessary in a given analysis (e.g., if there are

expected trade-offs between scores51) and explicitly state the effects that they might have on conclusions being drawn. These

issues have been discussed extensively elsewhere.27,19,51,52
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Figure 3A). Regions of particularly severe cumulative environ-

mental pressures represent areas where mitigation could be

essential to avoid transgressing environmental boundaries,

which could involve shifting to more sustainable production

practices (e.g., resulting in relatively lower cumulative pressures

(total and/or per unit production)) or food types.53 High cumula-

tive pressures per unit production (dark colors Figure 3B) repre-

sent potentially less efficient production practices or environ-

ments and should be explored in further detail to determine the

source of these relative inefficiencies. Areas with lower cumula-

tive pressure per unit production help identify more sustainable

policies, practices or environmental conditions that can be

applied to other regions. Again, considering environmental pres-

sures and pressures per unit production together can reveal

trade-offs in production practices to help improve sustainability

of the food system as a whole.

Mapping environmental pressures is the first step towardmap-

ping environmental impacts—the level at which policy decisions

should ultimately bemade (Box 4). The cumulative impact of food

production is calculated by summing across impacts from each

combination of pressures, pathways, and sensitivities (Figure

1). To make this spatially explicit, the intensity of each pressure

is mapped, while the pathways and sensitivities are generally

treated as either invariant or can be specific to a particular type

of environment, where that typology is alsomapped comprehen-

sively. Accounting for the distribution of environmental entities

that differ in sensitivity to a pressure enables the cumulative

impact map to capture local and regional differences in species
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and habitats. Altogether, these steps allow diverse impacts oper-

ating through a range of environmental pathways to be quantified

in a commonway across pressureswith regard to their impact on

particular environmental or societal outcomes. Although calcu-

lating cumulative impacts specific to food systems remains an

unresolved challenge, we provide a more detailed roadmap for

translating cumulative environmental pressures to impacts in

Box 4 and highlight it as an area in need of further development

and research for food systems.

Accounting for Uncertainty
Uncertainty can arise from many sources, in particular through

the underlying data used in calculations and the varying accu-

racy and robustness of the models. Indeed, data gaps still exist

that hinder cumulative mapping for some food production sys-

tems. However, the urgency and importance of addressing the

sustainability of food mean it is essential that transparent and

repeatable practices are developed now that will help make re-

sults more rigorous and amenable to updates from improved

data and models in the future.

The validity and repeatability of the results arising from this

framework first depend upon using the best available data

and models. For example, the Intergovernmental Panel on

Climate Change (IPCC) provides guidance on calculating

GHG emissions from agricultural activities.56 When available,

published models and open source data should be used. In

addition, it is ideal to provide full access to the scripts and

data used to calculate results. This provides full transparency



Figure 2. Landscape and Environmental Pressures Depicted in Our Hypothetical Example
Our hypothetical example includes (A) a landscape containing four food production types (beef, maize, salmon aquaculture, small pelagic fishery) and two natural
habitat types (forest, water), and environmental pressures from (B) area occupancy and disturbance (hectares), (C) greenhouse gas emissions (kg CO2 equiv-
alents (log + 1 transformed)), and (D) freshwater withdrawal (liters (log + 1 transformed)) from each food production type within the landscape.
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of the methods, makes results repeatable, and allows for

the revision of results when improved data and models become

available57 (https://knb.ecoinformatics.org/view/doi:10.5063/

F1PZ575B).

Next, clear documentation of high-level decisions (e.g.,

which pressure sources and food production types are

included or excluded and why), models, coefficients used in

models, data sources, and known weaknesses of each aspect

of the analysis increases transparency, identifies important

research gaps, and helps to improve assessments in the

future.12 Judging the quality and comprehensiveness of exist-

ing data (e.g., spatial resolution and gaps) should be guided

by the decisions and/or actions that the work is intended to

inform and should reflect the resolution of available data as

well as the availability of suitable proxies that could fill data

gaps. This level of transparency allows for the identification of

the source of potential differences between analyses and can

help pinpoint important assumptions and parameters that will
improve reliability and accuracy of modeling approaches in

the future.

Finally, it is critical to develop effective methods of tracking,

quantifying, and communicating approaches to dealing with

missing data. Estimating missing data, or gap filling, is critical

because it leads to less biased and more accurate results and

provides a measure of the reliability of the results for different

regions and pressure sources.58 For example, available

regional or national-level data can be used to ground-truth

production suitability mapping approaches and provide a

measure of error,59 but error measurements based on a sub-

set of places cannot be considered globally representative. A

systematic, hierarchical approach for determining pressures

provides information on sources of uncertainty: if fine-scale

data are not available for a given region or production type,

a national average can be used, or to fill gaps in national

data, a regional average could be applied. Weighting schemes

based on production types (e.g., intensive versus extensive)
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Figure 3. Resulting Spatially Explicit
Cumulative Pressure (Total and per Unit
Production) from Our Hypothetical Example
Mapped (A) cumulative pressure values at the site
where pressures are incurred and (B) cumulative
pressures per unit production values (mapped to
the final site of animal production) within the theo-
retical landscape.
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or levels (e.g., low versus high) can add further refinement to

these data-filling approaches, noting an equal weight is still an

assumed weighting scheme.60 All else being equal, however,

the most detailed data should be used when possible, and it

is usually preferable to fill data gaps through estimation than

to not account for a known pressure.58 There are many ap-

proaches to estimating missing data, and using cross-valida-

tion methods to estimate error can be used to inform the best

approach for gap filling and estimating uncertainty in models.

Ultimately, the pressures and impacts reported for food

production studies should include a description of the range

of plausible values (i.e., confidence intervals) given errors in

the model and data as well as natural variation. For example,

values describing the conversion of feed into animal products

are highly variable. Some of this variation is due to measure-

ment error, but much can be attributed to differences in

temperature, animal breed, feed components, as well as other

variables that are not controlled in agricultural systems and ex-

pected to vary. Confidence intervals can be estimated by boot-

strapping.61 Alternatively, values can be randomly sampled

from a probability distribution (e.g., normal distribution) based

on the population parameters derived from the data (e.g.,

mean and standard deviation of feed conversion ratios). A

full estimate of uncertainty is impossible because many

sources of uncertainty are unknowable or difficult to measure.

However, substantive improvements can be iteratively made

over time to achieve a more comprehensive assessment of

uncertainty.

Conclusions
As the human population races toward 10 billion people, the

need to rapidly develop effective policies to guide sustainable

food production is critical. Such policies must be rooted in un-

derstanding where, how, and to what extent different foods are

affecting the environment. At present, knowledge gaps limit

our understanding of the spatial distribution of pressures (total

and per unit production) and impacts of food production, poten-

tially resulting in food production policies that fail to protect the

interests of both people and nature.

Combining data and methodologies from LCA with cumula-

tive impact mapping provides an important step in filling this

knowledge gap and increasing our understanding of the envi-

ronmental footprint of food production. Doing so requires
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comprehensive, standardized, and fine-scale mapping of

pressure and production data. We have provided an overview

of how these data can be merged to understand cumulative

pressures and eventually impacts. Together, these integrative

spatial analyses can reveal patterns in the underlying pres-

sures, which can help guide development of better models

and food production policies now and into the future. This in-

formation is requisite to achieving fair comparisons among

components of the food system12 and identifying opportu-

nities to reduce the net impact of feeding humanity. Adopting

the approaches and many complexities outlined herein will

offer the food system and environmental science community

abundant opportunities to enhance understanding of pres-

sures of food production across diverse spatial scales and

food types.

EXPERIMENTAL PROCEDURES

Resource Availability
Lead Contact
Further information and requests for resources and reagents should
be directed to and will be fulfilled by the Lead Contact, Caitlin D. Kuempel
(c.kuempel@uq.edu.au).
Materials Availability
This study did not generate new unique materials.
Data and Code Availability
The data and code to recreate the results and figures associated with the paper
can be found on the KNB data repository at https://doi.org/10.5063/F1PZ575B
(https://knb.ecoinformatics.org/view/doi:10.5063/F1PZ575B). Some additional
processing of figures was undertaken in Microsoft PowerPoint, as noted in
the relevant codes. This work is dedicated to the public domain under the
Creative Commons Universal 1.0 Public Domain Dedication. To view a copy
of this dedication, visit https://creativecommons.org/publicdomain/zero/1.0/.

Methods for Developing Our Hypothetical Example
Our hypothetical example demonstrates the general approach for mapping
cumulative environmental pressures (total and per unit production) of food pro-
duction for beef, maize, salmon aquaculture and a small pelagic fishery from
‘‘cradle to gate’’ (Figures 3A and 3B). Reproducible code to recreate this
example can be found on the KNB data repository (https://knb.
ecoinformatics.org/view/doi:10.5063/F1PZ575B). Although we endeavored
to base our example on realistic data, our intention is to demonstrate the im-
plementation of the methodology, and thus the values are illustrative only.

Hypothetical Landscape
We created a theoretical landscape (Figure 2A) with four food production
types (beef, maize, salmon aquaculture, small pelagic fishery) and two nat-
ural habitat types (forest, water) based on a two-dimensional fractional
Brownian motion neutral landscape model using the nlm_fbm function in
the NLMR package62 in R v3.6.1.63 We assumed the spatial resolution of

mailto:c.kuempel@uq.edu.au
https://doi.org/10.5063/F1PZ575B
https://knb.ecoinformatics.org/view/doi:10.5063/F1PZ575B
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Box 4. Mapping Environmental Pathways and Impacts

The ultimate goal of LCA and cumulative impact mapping methodologies is to measure the environmental pressures and associ-

ated pathways of food production to better understand resulting impacts on the environment and society. Thus, a method for

translating pressures to pathways and finally impacts is needed.

Linking environmental pressures to pathways is difficult, because it requires full accounting of the sources and sinks of environ-

mental changes. The easiest case is when a pressure is considered to be diffuse and contribute to the same generic receiving

environment (site generic26), such as GHG emissions. Since GHG emissions have an impact on the entire world, this allows for

attribution of the ~26% of global GHG emissions from terrestrial food production1 to resultant pathways of sea level rise, ocean

acidification, or change in sea surface temperature. Nutrient pollution, on the other hand, is intermediate and spatial occupancy

and disturbance is non-diffuse, acting at local and regional scales, and thus require careful modeling and accounting of temporal

and spatial dynamics that influence where and howmuch each pressure travels across the land and/or seascape (site-dependent

and site-specific pressures). Notably, only cumulative environmental pressures mapped to the place where pressures are incurred

should be translated to impacts as impacts are in relation to the underlying human and environmental entities in an area.

Once the contribution of each pressure to each pathway has been allocated, there are five key sub-steps in translating these envi-

ronmental pathways (Figure 1, step 2) to impacts (Figure 1, step 3):

1. Determine and map the intensity of the environmental pathways across the study area.

2. Determine andmap the ‘‘entity’’ that is being impacted. This entity can be species or habitats for biodiversity outcomes andhu-

man populations of different demographic and socioeconomic status or ecosystem services for social outcomes.

3. Determine the sensitivity of these entities to each pressure.

4. Multiply the presence of the entity in a given area by its sensitivity to the pathway and the pathway intensity for each combi-

nation of entity and pathway.

5. Combine spatial intensity and sensitivity values to form a final cumulative impact map (similar to in Box 3). If the resolution is

fine enough that any given pixel has only one entity (habitat or population), then the spatial impact values (pressure intensity

and entity vulnerability) can be summed. However, if any given pixel has more than one entity, the values should be

averaged.

Determining the sensitivity of different entities (sub-step 3 from above) is arguably the most challenging step in this process

and entails considerable complexity, often relying on subjective weighting variables derived from expert surveys.54 Notably,

methodologies to assess and incorporate the uncertainty in these approaches have recently been developed, such as using a

range (e.g., worst case, most likely, best case) of sensitivity values.55 LCIA analyses have derived habitat sensitivity based on

species richness to quantify ‘‘potentially disappeared fraction of species’’ (i.e., the number of species, or fraction thereof,

which might disappear as a result of the cumulative impacts of the action under study), and measured sensitivity of human

health in terms of disability-adjusted life-years (DALYs).14 Cumulative assessments that are focused on impacts on humans

largely quantify sensitivity based on demographics and/or socioeconomic variables,20,21 but could also consider the sensi-

tivity of ecosystem services to environmental pathways (which in turn might have an impact on biodiversity and/or human

well-being). Further, although there is a great need to combine terrestrial and aquatic impact mapping, especially for food

production, this further complicates the development of sensitivity measures given varying baselines (e.g., the land has

been in a relatively degraded state for hundreds to thousands of years because of human activity, compared with the rela-

tively recent large-scale anthropogenic impacts to the ocean). These and other caveats need to be carefully considered to

determine relevant baselines and approaches for calculating entity sensitivity.
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our example was 1 ha. For simplicity, we assumed that each grid cell in the
landscape was fully occupied by a single food production type. In reality,
and dependent on the spatial resolution of the analysis, multiple production
types might overlap within a cell or only partially cover cells. However, this
difference does not impact the described methodology.

Production Data
We randomly sampled yield data (kilograms live weight per hectare) based on
high and low yield estimates (Table S1). We assumed the high and low yield
estimates were 95th and 5th quantiles of the yield distributions and randomly
sampled yields for each production type assuming a uniform distribution. Yield
samples were then randomly assigned to grid cells of the corresponding food
production type within the theoretical landscape (Figure S2).

On-Farm Pressure Data
We considered three pressures in our example: occupancy/disturbance (hect-
ares), GHG emissions (kilograms CO2 equivalent) and freshwater withdrawal
(liters). Pressure data for GHG emissions and freshwater withdrawal for
beef, maize, and salmon aquaculture were modeled based on farm pressure
data reported in Poore and Nemecek.1 Due to our cradle-to-gate study design,
we excluded pressures attributed to processing, packaging, transporting,
storing, retail, and loss. Poore and Nemecek1 values were converted from
the reported retail weight to kilograms of live weight by removing the conver-
sion from live weight to retail weight for all production types and removing or
reversing the economic allocation to secondary by-products for beef produc-
tion (Poore, personal communication).
Pressure data for the small pelagic fishery was sourced from Hilborn et al.24

and was converted to kilograms of live weight from the reported functional unit
of 40 g of protein assuming a conversion factor of 180 g of edible protein per
filet (herring24). These values only included pressures up to the vessel landing
site, and thus were already consistent with the cradle-to-gate scope of our
example. Freshwater withdrawal was not considered as a pressure for wild
fisheries as wild fish are not fed and freshwater use is minimal up to the vessel
landing site.
Reported GHG emissions and freshwater withdrawal values had varying

sample sizes for each pressure and production type (Table S2). A log-normal
distribution was fit to these values for each food production type and pressure
by using the fitdist function in the fitdistrplus package64 in R v3.6.1.63 To incor-
porate zero pressure data for some production types, a value of 0.00001 was
added to all pressure values. Modeled samples were produced, equal to the
number of cells of each food production type in our theoretical landscape, us-
ing the resulting model fit estimates (Table S3).
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Area occupancy/disturbance, the final pressure in our analysis, was calcu-
lated based on the expected disturbance of each production type in each
cell. We assumed that maize, beef, and salmon production would result in
100% disturbance of the underlying environment because of the relatively
more stationary and intensive nature of these production types. We assumed
the small pelagic fishery would cause one-third of this disturbance. This
value is arbitrary but reflects lower disturbance that is expected due to the
use of targeted fishing gear that generally has very low environmental
impact. More refined estimates and/or sensitivity tests to explore how
changes in these values impact results should be employed when using
this approach.
The calculated sampled pressure values represent the on-farm pressure

from each production type per kilogram live weight. Thus, to calculate the to-
tal on-farm pressure, we multiplied the sampled pressure values for GHG
emissions and freshwater withdrawals by the production (i.e., yield) esti-
mates in each cell. For simplicity, we assumed that occupancy/disturbance
was not impacted by production level and thus did not adjust these values by
production values. When considering animal production types, another
approach to calculating pressures per cell would be to calculate individual
pressures per animal and multiplying by the number of reared animals occu-
pying each cell.
Mapping Pressures
For each food production type, we calculated and mapped pressures
in two ways: where pressures are incurred (feed and final animal produc-
tion site) and the final animal production site (Box 2, figure). To map cumu-
lative pressures, the on-farm pressure values were randomly allocated to
cells of each production type as described above (Figures 2B–2D and
3A). In both cases, it is important to be able to account for pressures
resulting from feed production and on-farm pressures from final animal
production.
To calculate environmental pressure per unit production, environmental

pressure from feed (e.g., maize and small pelagic fishery) used to produce
beef and salmon aquaculture needed to be accounted for at the site of animal
production, and feed crop pressure values needed to be adjusted accordingly.
Methods and further discussion for this accounting can be found in the main
text and Box 2. Input variables for these calculations are in Table S4. The final
proportion of on-farm pressures for beef and salmon aquaculture can be found
in Table S5, and summary statistics for environmental pressures for each food
production type across the entire landscape in Table S6.
In some cases, tabular pressure data from feed and on-farm activities

can be reported as a single pressure attributed to the final product site.
To map these pressures to the site they were incurred, they will need to
be separated on the basis of feed and on-farm pressures. To separate
pressure attributed to feed production from that attributed to the on-farm
final animal product, the proportion of total feed crop in the study area
needed to meet feed demand of an animal product, Dc;a, should be calcu-
lated as in Box 2.
Given the assumption that the proportion of each pressure (e.g., GHG emis-

sions) attributed to feed would be equal to the proportion of each crop needed
for feed (e.g., if 1%ofmaize production was needed to feed the total amount of
beef production, then 1% of maize GHG emissions are assumed to be ac-
counted for within the total beef GHG emission estimates), then the proportion
of on-farm pressures, SP;a, can be calculated as

Sp;a =
Ps;a � Ps;cDc;a

Ps;a

; (Equation 8)

wherePs;a is the total amount of pressure, s, from animal type a, andPs;c is the
total amount of pressure, s, from feed type c. Assuming cells where feed pro-
duction occur still include pressures attributed to feed production (e.g., a po-
tential double counting of feed pressures at the feed and final animal produc-
tion sites), feed production cells (e.g., maize, small pelagic fishery in our
example) for each pressure need to be multiplied by the proportion of on-
farm feed pressures not attributed to animal feed production, ð1 � Dc;aÞ, and
all fed animal production cells by the proportion of on-farm pressure, Sp;a, to
spatially disaggregate on- and off-farm pressures in relation to production
level for each production type.
SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.
oneear.2020.06.014.
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