19 research outputs found

    Food Quality and Phytoplankton Community Composition in San Francisco Bay using Imaging Spectroscopy Data from the California HyspIRI Airborne Campaign

    Get PDF
    The San Francisco Bay (SFB) is the largest estuary on the west coast of the United States. It is an important transition zone between marine, freshwater, and inland terrestrial watersheds. The SFB is an important region for the cycling of nutrients and pollutants and it supports nurseries of ecologically and commercially important fisheries, including some threatened species. Phytoplankton community structure influences food web dynamics, and the taxonomy of the phytoplankton may be more important in determining primary food quality than environmental factors. As such, estimating food quality from phytoplankton community composition can be a robust tool to understand trophic transfer of energy. Recent work explores phytoplankton food quality in SFB through the use of microscopy and phytoplankton chemotaxonomy to evaluate how changes in phytoplankton composition may have influenced the recent trophic collapse of pelagic fishes in the northern part of the SFB. The objective of this study is to determine if the approach can also be applied to imaging spectroscopy data in order to quantify phytoplankton food quality from space. Imaging spectroscopy data of SFB from the Airborne VisibleInfrared Imaging Spectrometer (AVIRIS) was collected during the Hyperspectral Infrared (HyspIRI) Airborne Campaign in California (2013 2015) and used in this study. Estimates of ocean chlorophyll and phytoplankton community structure were determined using standard ocean chlorophyll algorithms and the PHYtoplankton Detection with Optics (PHYDOTax) algorithms. These were validated using in situ observations of phytoplankton composition using microscopic cell counts and phytoplankton chemotaxonomy from the US Geological Surveys ship surveys of the SFB. The findings from this study may inform the use of future high spectral resolution satellite sensors with the spatial resolution appropriate for coastal systems (e.g., HyspIRI) to assess food quality from space

    Framing and Context of the Report

    Get PDF
    The Intergovernmental Panel on Climate Change (IPCC) is the leading international body for assessing the science related to climate change. It provides policymakers with regular assessments of the scientific basis of human-induced climate change, its impacts and future risks, and options for adaptation and mitigation. This IPCC Special Report on the Ocean and Cryosphere in a Changing Climate is the most comprehensive and up-to-date assessment of the observed and projected changes to the ocean and cryosphere and their associated impacts and risks, with a focus on resilience, risk management response options, and adaptation measures, considering both their potential and limitations. It brings together knowledge on physical and biogeochemical changes, the interplay with ecosystem changes, and the implications for human communities. It serves policymakers, decision makers, stakeholders, and all interested parties with unbiased, up-to-date, policy-relevant information. Chapter 1: This special report assesses new knowledge since the IPCC 5th Assessment Report (AR5) and the Special Report on Global Warming of 1.5ÂșC (SR15) on how the ocean and cryosphere have and are expected to change with ongoing global warming, the risks and opportunities these changes bring to ecosystems and people, and mitigation, adaptation and governance options for reducing future risks. Chapter 1 provides context on the importance of the ocean and cryosphere, and the framework for the assessments in subsequent chapters of the report. All people on Earth depend directly or indirectly on the ocean and cryosphere. The fundamental roles of the ocean and cryosphere in the Earth system include the uptake and redistribution of anthropogenic carbon dioxide and heat by the ocean, as well as their crucial involvement of in the hydrological cycle. The cryosphere also amplifies climate changes through snow, ice and permafrost feedbacks. Services provided to people by the ocean and/or cryosphere include food and freshwater, renewable energy, health and wellbeing, cultural values, trade and transport. {1.1, 1.2, 1.5} Sustainable development is at risk from emerging and intensifying ocean and cryosphere changes. Ocean and cryosphere changes interact with each of the United Nations Sustainable Development Goals (SDGs). Progress on climate action (SDG 13) would reduce risks to aspects of sustainable development that are fundamentally linked to the ocean and cryosphere and the services they provide (high confidence1 ). Progress on achieving the SDGs can contribute to reducing the exposure or vulnerabilities of people and communities to the risks of ocean and cryosphere change (medium confidence). {1.1} Communities living in close connection with polar, mountain, and coastal environments are particularly exposed to the current and future hazards of ocean and cryosphere change. Coasts are home to approximately 28% of the global population, including around 11% living on land less than 10 m above sea level. Almost 10% of the global population lives in the Arctic or high mountain regions. People in these regions face the greatest exposure to ocean and cryosphere change, and poor and marginalised people here are particularly vulnerable to climate-related hazards and risks (very high confidence). The adaptive capacity of people, communities and nations is shaped by social, political, cultural, economic, technological, institutional, geographical and demographic factors. {1.1, 1.5, 1.6, Cross-Chapter Box 2 in Chapter 1} Ocean and cryosphere changes are pervasive and observedfrom high mountains, to the polar regions, to coasts, and intothe deep ocean. AR5 assessed that the ocean is warming (0 to700 m: virtually certain2; 700 to 2,000 m: likely), sea level is rising(high confidence), and ocean acidity is increasing (high confidence).Most glaciers are shrinking (high confidence), the Greenland andAntarctic ice sheets are losing mass (high confidence), sea ice extent inthe Arctic is decreasing (very high confidence), Northern Hemispheresnow cover is decreasing (very high confidence), and permafrosttemperatures are increasing (high confidence). Improvementssince AR5 in observation systems, techniques, reconstructions andmodel developments, have advanced scientific characterisationand understanding of ocean and cryosphere change, including inpreviously identified areas of concern such as ice sheets and AtlanticMeridional Overturning Circulation (AMOC). {1.1, 1.4, 1.8.1}Evidence and understanding of the human causes of climatewarming, and of associated ocean and cryosphere changes,has increased over the past 30 years of IPCC assessments (veryhigh confidence). Human activities are estimated to have causedapproximately 1.0ÂșC of global warming above pre-industrial levels(SR15). Areas of concern in earlier IPCC reports, such as the expectedacceleration of sea level rise, are now observed (high confidence).Evidence for expected slow-down of AMOC is emerging in sustainedobservations and from long-term palaeoclimate reconstructions(medium confidence), and may be related with anthropogenic forcingaccording to model simulations, although this remains to be properlyattributed. Significant sea level rise contributions from Antarctic icesheet mass loss (very high confidence), which earlier reports did notexpect to manifest this century, are already being observed. {1.1, 1.4}Ocean and cryosphere changes and risks by the end-of-century(2081?2100) will be larger under high greenhouse gas emissionscenarios, compared with low emission scenarios (very highconfidence). Projections and assessments of future climate, oceanand cryosphere changes in the Special Report on the Ocean andCryosphere in a Changing Climate (SROCC) are commonly basedon coordinated climate model experiments from the Coupled ModelIntercomparison Project Phase 5 (CMIP5) forced with RepresentativeConcentration Pathways (RCPs) of future radiative forcing. Currentemissions continue to grow at a rate consistent with a high emissionfuture without effective climate change mitigation policies (referredto as RCP8.5). The SROCC assessment contrasts this high greenhousegas emission future with a low greenhouse gas emission, highmitigation future (referred to as RCP2.6) that gives a two in threechance of limiting warming by the end of the century to less than 2oC above pre-industrial. {Cross-Chapter Box 1 in Chapter 1} Characteristics of ocean and cryosphere change include thresholds of abrupt change, long-term changes that cannot be avoided, and irreversibility (high confidence). Ocean warming, acidification and deoxygenation, ice sheet and glacier mass loss, and permafrost degradation are expected to be irreversible on time scales relevant to human societies and ecosystems. Long response times of decades to millennia mean that the ocean and cryosphere are committed to long-term change even after atmospheric greenhouse gas concentrations and radiative forcing stabilise (high confidence). Ice-melt or the thawing of permafrost involve thresholds (state changes) that allow for abrupt, nonlinear responses to ongoing climate warming (high confidence). These characteristics of ocean and cryosphere change pose risks and challenges to adaptation. {1.1, Box 1.1, 1.3} Societies will be exposed, and challenged to adapt, to changes in the ocean and cryosphere even if current and future efforts to reduce greenhouse gas emissions keep global warming well below 2ÂșC (very high confidence). Ocean and cryosphere-related mitigation and adaptation measures include options that address the causes of climate change, support biological and ecological adaptation, or enhance societal adaptation. Most ocean-based local mitigation and adaptation measures have limited effectiveness to mitigate climate change and reduce its consequences at the global scale, but are useful to implement because they address local risks, often have co-benefits such as biodiversity conservation, and have few adverse side effects. Effective mitigation at a global scale will reduce the need and cost of adaptation, and reduce the risks of surpassing limits to adaptation. Ocean-based carbon dioxide removal at the global scale has potentially large negative ecosystem consequences. {1.6.1, 1.6.2, Cross-Chapter Box 2 in Chapter 1} The scale and cross-boundary dimensions of changes in the ocean and cryosphere challenge the ability of communities, cultures and nations to respond effectively within existing governance frameworks (high confidence). Profound economic and institutional transformations are needed if climate-resilient development is to be achieved (high confidence). Changes in the ocean and cryosphere, the ecosystem services that they provide, the drivers of those changes, and the risks to marine, coastal, polar and mountain ecosystems, occur on spatial and temporal scales that may not align within existing governance structures and practices (medium confidence). This report highlights the requirements for transformative governance, international and transboundary cooperation, and greater empowerment of local communities in the governance of the ocean, coasts, and cryosphere in a changing climate. {1.5, 1.7, Cross-Chapter Box 2 in Chapter 1, Cross-Chapter Box 3 in Chapter 1} Robust assessments of ocean and cryosphere change, and the development of context-specific governance and response options, depend on utilising and strengthening all available knowledge systems (high confidence). Scientific knowledge from observations, models and syntheses provides global to local scale understandings of climate change (very high confidence). Indigenous knowledge (IK) and local knowledge (LK) provide context-specific and socio-culturally relevant understandings for effective responses and policies (medium confidence). Education and climate literacy enable climate action and adaptation (high confidence). {1.8, Cross-Chapter Box 4 in Chapter 1} Long-term sustained observations and continued modelling are critical for detecting, understanding and predicting ocean and cryosphere change, providing the knowledge to inform risk assessments and adaptation planning (high confidence). Knowledge gaps exist in scientific knowledge for important regions, parameters and processes of ocean and cryosphere change, including for physically plausible, high impact changes like high end sea level rise scenarios that would be costly if realised without effective adaptation planning and even then may exceed limits to adaptation. Means such as expert judgement, scenario building, and invoking multiple lines of evidence enable comprehensive risk assessments even in cases of uncertain future ocean and cryosphere changes.Fil: Abram, Nerilie. Australian National University; AustraliaFil: Gattuso, Jean Pierre. Centre National de la Recherche Scientifique; FranciaFil: Prakash, Anjal. Teri School Of Advanced Studies; IndiaFil: Cheng, Lijing. Chinese Academy Of Science; ChinaFil: Chidichimo, MarĂ­a Paz. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; Argentina. Ministerio de Defensa. Armada Argentina. Servicio de HidrografĂ­a Naval. Departamento OceanografĂ­a; ArgentinaFil: Crate, Susan. George Mason University; Estados UnidosFil: Enomoto, H.. National Polar Agency; JapĂłnFil: Garschagen, M.. Technische Universitat MĂŒnchen; AlemaniaFil: Gruber, N.. Swiss Federal Institute of Technology Zurich; SuizaFil: Harper, S.. University Of Alberta. Faculty Of Agricultural, Life And Environmental Sciences. Departament Of Agricultural, Food And Nutritional Science.; CanadĂĄFil: Holland, Elisabeth. University Of South Pacific; FiyiFil: Kudela, Raphael Martin. University of California at San Diego. Scripps Institution of Oceanography; Estados UnidosFil: Rice, Jake. University of Toronto; CanadĂĄFil: Steffen, Konrad. Swiss Federal Institute for Forest, Snow and Landscape Research; SuizaFil: Von Schuckmann, Karina. Mercator Ocean International; Franci

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    Advancing Marine Biological Observations and Data Requirements of the Complementary Essential Ocean Variables (EOVs) and Essential Biodiversity Variables (EBVs) Frameworks

    Get PDF
    Measurements of the status and trends of key indicators for the ocean and marine life are required to inform policy and management in the context of growing human uses of marine resources, coastal development, and climate change. Two synergistic efforts identify specific priority variables for monitoring: Essential Ocean Variables (EOVs) through the Global Ocean Observing System (GOOS), and Essential Biodiversity Variables (EBVs) from the Group on Earth Observations Biodiversity Observation Network (GEO BON) (see Data Sheet 1 in Supplementary Materials for a glossary of acronyms). Both systems support reporting against internationally agreed conventions and treaties. GOOS, established under the auspices of the Intergovernmental Oceanographic Commission (IOC), plays a leading role in coordinating global monitoring of the ocean and in the definition of EOVs. GEO BON is a global biodiversity observation network that coordinates observations to enhance management of the world's biodiversity and promote both the awareness and accounting of ecosystem services. Convergence and agreement between these two efforts are required to streamline existing and new marine observation programs to advance scientific knowledge effectively and to support the sustainable use and management of ocean spaces and resources. In this context, the Marine Biodiversity Observation Network (MBON), a thematic component of GEO BON, is collaborating with GOOS, the Ocean Biogeographic Information System (OBIS), and the Integrated Marine Biosphere Research (IMBeR) project to ensure that EBVs and EOVs are complementary, representing alternative uses of a common set of scientific measurements. This work is informed by the Joint Technical Commission for Oceanography and Marine Meteorology (JCOMM), an intergovernmental body of technical experts that helps international coordination on best practices for observing, data management and services, combined with capacity development expertise. Characterizing biodiversity and understanding its drivers will require incorporation of observations from traditional and molecular taxonomy, animal tagging and tracking efforts, ocean biogeochemistry, and ocean observatory initiatives including the deep ocean and seafloor. The partnership between large-scale ocean observing and product distribution initiatives (MBON, OBIS, JCOMM, and GOOS) is an expedited, effective way to support international policy-level assessments (e.g., the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services or IPBES), along with the implementation of international development goals (e.g., the United Nations Sustainable Development Goals)

    NASA\u27s Surface Biology and Geology Designated Observable: A Perspective on Surface Imaging Algorithms

    No full text
    The 2017–2027 National Academies\u27 Decadal Survey, Thriving on Our Changing Planet, recommended Surface Biology and Geology (SBG) as a “Designated Targeted Observable” (DO). The SBG DO is based on the need for capabilities to acquire global, high spatial resolution, visible to shortwave infrared (VSWIR; 380–2500 nm; ~30 m pixel resolution) hyperspectral (imaging spectroscopy) and multispectral midwave and thermal infrared (MWIR: 3–5 ÎŒm; TIR: 8–12 ÎŒm; ~60 m pixel resolution) measurements with sub-monthly temporal revisits over terrestrial, freshwater, and coastal marine habitats. To address the various mission design needs, an SBG Algorithms Working Group of multidisciplinary researchers has been formed to review and evaluate the algorithms applicable to the SBG DO across a wide range of Earth science disciplines, including terrestrial and aquatic ecology, atmospheric science, geology, and hydrology. Here, we summarize current state-of-the-practice VSWIR and TIR algorithms that use airborne or orbital spectral imaging observations to address the SBG DO priorities identified by the Decadal Survey: (i) terrestrial vegetation physiology, functional traits, and health; (ii) inland and coastal aquatic ecosystems physiology, functional traits, and health; (iii) snow and ice accumulation, melting, and albedo; (iv) active surface composition (eruptions, landslides, evolving landscapes, hazard risks); (v) effects of changing land use on surface energy, water, momentum, and carbon fluxes; and (vi) managing agriculture, natural habitats, water use/quality, and urban development. We review existing algorithms in the following categories: snow/ice, aquatic environments, geology, and terrestrial vegetation, and summarize the community-state-of-practice in each category. This effort synthesizes the findings of more than 130 scientists

    GLORIA - A globally representative hyperspectral in situ dataset for optical sensing of water quality

    Get PDF
    The development of algorithms for remote sensing of water quality (RSWQ) requires a large amount of in situ data to account for the bio-geo-optical diversity of inland and coastal waters. The GLObal Reflectance community dataset for Imaging and optical sensing of Aquatic environments (GLORIA) includes 7,572 curated hyperspectral remote sensing reflectance measurements at 1 nm intervals within the 350 to 900 nm wavelength range. In addition, at least one co-located water quality measurement of chlorophyll a, total suspended solids, absorption by dissolved substances, and Secchi depth, is provided. The data were contributed by researchers affiliated with 59 institutions worldwide and come from 450 different water bodies, making GLORIA the de-facto state of knowledge of in situ coastal and inland aquatic optical diversity. Each measurement is documented with comprehensive methodological details, allowing users to evaluate fitness-for-purpose, and providing a reference for practitioners planning similar measurements. We provide open and free access to this dataset with the goal of enabling scientific and technological advancement towards operational regional and global RSWQ monitoring

    Data_Sheet_1_Advancing Marine Biological Observations and Data Requirements of the Complementary Essential Ocean Variables (EOVs) and Essential Biodiversity Variables (EBVs) Frameworks.docx

    No full text
    <p>Measurements of the status and trends of key indicators for the ocean and marine life are required to inform policy and management in the context of growing human uses of marine resources, coastal development, and climate change. Two synergistic efforts identify specific priority variables for monitoring: Essential Ocean Variables (EOVs) through the Global Ocean Observing System (GOOS), and Essential Biodiversity Variables (EBVs) from the Group on Earth Observations Biodiversity Observation Network (GEO BON) (see Data Sheet 1 in Supplementary Materials for a glossary of acronyms). Both systems support reporting against internationally agreed conventions and treaties. GOOS, established under the auspices of the Intergovernmental Oceanographic Commission (IOC), plays a leading role in coordinating global monitoring of the ocean and in the definition of EOVs. GEO BON is a global biodiversity observation network that coordinates observations to enhance management of the world's biodiversity and promote both the awareness and accounting of ecosystem services. Convergence and agreement between these two efforts are required to streamline existing and new marine observation programs to advance scientific knowledge effectively and to support the sustainable use and management of ocean spaces and resources. In this context, the Marine Biodiversity Observation Network (MBON), a thematic component of GEO BON, is collaborating with GOOS, the Ocean Biogeographic Information System (OBIS), and the Integrated Marine Biosphere Research (IMBeR) project to ensure that EBVs and EOVs are complementary, representing alternative uses of a common set of scientific measurements. This work is informed by the Joint Technical Commission for Oceanography and Marine Meteorology (JCOMM), an intergovernmental body of technical experts that helps international coordination on best practices for observing, data management and services, combined with capacity development expertise. Characterizing biodiversity and understanding its drivers will require incorporation of observations from traditional and molecular taxonomy, animal tagging and tracking efforts, ocean biogeochemistry, and ocean observatory initiatives including the deep ocean and seafloor. The partnership between large-scale ocean observing and product distribution initiatives (MBON, OBIS, JCOMM, and GOOS) is an expedited, effective way to support international policy-level assessments (e.g., the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services or IPBES), along with the implementation of international development goals (e.g., the United Nations Sustainable Development Goals).</p
    corecore