21 research outputs found

    Inter- and Intra-Observer Variability and the Effect of Experience in Cine-MRI for Adhesion Detection

    Get PDF
    Cine-MRI for adhesion detection is a promising novel modality that can help the large group of patients developing pain after abdominal surgery. Few studies into its diagnostic accuracy are available, and none address observer variability. This retrospective study explores the inter- and intra-observer variability, diagnostic accuracy, and the effect of experience. A total of 15 observers with a variety of experience reviewed 61 sagittal cine-MRI slices, placing box annotations with a confidence score at locations suspect for adhesions. Five observers reviewed the slices again one year later. Inter- and intra-observer variability are quantified using Fleiss’ (inter) and Cohen’s (intra) κ and percentage agreement. Diagnostic accuracy is quantified with receiver operating characteristic (ROC) analysis based on a consensus standard. Inter-observer Fleiss’ κ values range from 0.04 to 0.34, showing poor to fair agreement. High general and cine-MRI experience led to significantly (p < 0.001) better agreement among observers. The intra-observer results show Cohen’s κ values between 0.37 and 0.53 for all observers, except one with a low κ of −0.11. Group AUC scores lie between 0.66 and 0.72, with individual observers reaching 0.78. This study confirms that cine-MRI can diagnose adhesions, with respect to a radiologist consensus panel and shows that experience improves reading cine-MRI. Observers without specific experience adapt to this modality quickly after a short online tutorial. Observer agreement is fair at best and area under the receiver operating characteristic curve (AUC) scores leave room for improvement. Consistently interpreting this novel modality needs further research, for instance, by developing reporting guidelines or artificial intelligence-based methods

    Estimativa do índice de área Foliar (IAF) e biomassa em pastagem no estado de Rondônia, Brasil

    Get PDF
    Medidas mensais da altura da pastagem, biomassa total, variações de biomassa viva e morta, a área específica foliar (SLA) e o Índice de Área de Folha (IAF) de fevereiro de 1999 a janeiro de 2005 na Fazenda Nossa Senhora (FNS) e em Rolim de Moura (RDM) entre Fevereiro a Março de 1999, Rondônia, Brasil. A pastagem predominante é Urochloa brizantha (Hochst. ex A. Rich) R. D. Webster (99% na FNS e 76% em RDM), com pequenas manchas de Urochloa humidicula (Rendle). A altura média anual da grama foi de ~0,16 m. Com o pastejo, o mínimo mensal foi de 0,09 m (estação seca) e máximo de 0,3 m sem pastejo (estação úmida). O IAF, biomassa total, material morto, vivo e SLA tiveram valores médios de 2,5 m2 m-2 , 2202 kg ha-1, 2916 kg ha-1 e 19 m2 kg-1 respectivamente. A média mensal da biomassa foi 4224 kg ha-1 em 2002 e 6667 kg ha-1 em 2003. Grande variação sazonal do material vivo e morto, sendo mais alto o vivo durante a estação úmida (3229 contra 2529 kg ha-1), sendo o morto maior durante a seca (2542 contra 1894 kg ha-1). O nível de água no solo variou de -3,1 a -6,5 m durante as estações. Em médias anuais os IAF foram de 1,4 em 2000 a 2,8 em 2003 e o SLA entre 16,3 m2 kg-1 em 1999 e 20,4 m2 kg-1 em 2001. As observações do Albedo variaram de 0,18 para 0,16 em relação aos altos valores de IAF

    Projeto Interdisciplinar do Pantanal - Fase Umida (IPE-1)

    No full text
    A field campaign was carried out in the South Mato Grosso Pantanal, as part of a broad experimental program to study the characteristics of the weather and the climate of the central region of Brazil. The aim of this experiment is to investigate the structure of the surface boundary layer above the Pantanal, during the flood season, in a site representative of the region (19°33'48" S; 57°00'53"W), located about 1.5 km from the Pantanal Studies Base of the Federal University of Mato Grosso do Sul (UFMS), in Passo do Lontra, MS.Pages:

    ForestClim—Bioclimatic variables for microclimate temperatures of European forests

    No full text
    Microclimate research gained renewed interest over the last decade and its importance for many ecological processes is increasingly being recognized. Consequently, the call for high-resolution microclimatic temperature grids across broad spatial extents is becoming more pressing to improve ecological models. Here, we provide a new set of open-access bioclimatic variables for microclimate temperatures of European forests at 25 × 25 m2 resolution

    Carbon-nitrogen interactions in European forests and semi-natural vegetation - Part 1 : Fluxes and budgets of carbon, nitrogen and greenhouse gases from ecosystem monitoring and modelling

    Get PDF
    The impact of atmospheric reactive nitrogen (N-r) deposition on carbon (C) sequestration in soils and biomass of unfertilized, natural, semi-natural and forest ecosystems has been much debated. Many previous results of this dC/dN response were based on changes in carbon stocks from periodical soil and ecosystem inventories, associated with estimates of N-r deposition obtained from large-scale chemical transport models. This study and a companion paper (Flechard et al., 2020) strive to reduce uncertainties of N effects on C sequestration by linking multi-annual gross and net ecosystem productivity estimates from 40 eddy covariance flux towers across Europe to local measurement-based estimates of dry and wet N-r deposition from a dedicated collocated monitoring network. To identify possible ecological drivers and processes affecting the interplay between C and N-r inputs and losses, these data were also combined with in situ flux measurements of NO, N2O and CH4 fluxes; soil NO3- leaching sampling; and results of soil incubation experiments for N and greenhouse gas (GHG) emissions, as well as surveys of available data from online databases and from the literature, together with forest ecosystem (BAS-FOR) modelling. Multi-year averages of net ecosystem productivity (NEP) in forests ranged from -70 to 826 gCm(-2) yr(-1) at total wet + dry inorganic N-r deposition rates (N-dep) of 0.3 to 4.3 gNm(-2) yr(-1) and from -4 to 361 g Cm-2 yr(-1) at N-dep rates of 0.1 to 3.1 gNm(-2) yr(-1) in short semi-natural vegetation (moorlands, wetlands and unfertilized extensively managed grasslands). The GHG budgets of the forests were strongly dominated by CO2 exchange, while CH4 and N2O exchange comprised a larger proportion of the GHG balance in short semi-natural vegetation. Uncertainties in elemental budgets were much larger for nitrogen than carbon, especially at sites with elevated N-dep where N-r leaching losses were also very large, and compounded by the lack of reliable data on organic nitrogen and N-2 losses by denitrification. Nitrogen losses in the form of NO, N2O and especially NO3- were on average 27%(range 6 %-54 %) of N-dep at sites with N-dep 3 gNm(-2) yr(-1). Such large levels of N-r loss likely indicate that different stages of N saturation occurred at a number of sites. The joint analysis of the C and N budgets provided further hints that N saturation could be detected in altered patterns of forest growth. Net ecosystem productivity increased with N-r deposition up to 2-2.5 gNm(-2) yr(-1), with large scatter associated with a wide range in carbon sequestration efficiency (CSE, defined as the NEP/GPP ratio). At elevated N-dep levels (> 2.5 gNm(-2) yr(-1)), where inorganic N-r losses were also increasingly large, NEP levelled off and then decreased. The apparent increase in NEP at low to intermediate N-dep levels was partly the result of geographical cross-correlations between N-dep and climate, indicating that the actual mean dC/dN response at individual sites was significantly lower than would be suggested by a simple, straightforward regression of NEP vs. N-dep.Peer reviewe
    corecore