28 research outputs found

    Placental promoter methylation of DNA repair genes and prenatal exposure to particulate air pollution: an ENVIRONAGE cohort study

    Get PDF
    BACKGROUND: Exposure to particulate air pollution has been linked with risk of carcinogenesis. Damage to repair pathways might have long-term adverse health effects. We aimed to investigate the association of prenatal exposure to air pollution with placental mutation rate and the DNA methylation of key placental DNA repair genes. METHODS: This cohort study used data from the ongoing ENVironmental Influence ON early AGEing (ENVIRONAGE) birth cohort, which enrols pairs of mothers and neonates (singleton births only) at the East-Limburg Hospital (Genk, Belgium). Placental DNA samples were collected after birth. We used bisulfite-PCR-pyrosequencing to investigate the mutation rate of Alu (a marker for overall DNA mutation) and DNA methylation in the promoter genes of key DNA repair and tumour suppressor genes (APEX1, OGG1, PARP1, ERCC1, ERCC4, p53, and DAPK1). We used a high-resolution air pollution model to estimate exposure to particulate matter with a diameter less than 2·5 μm (PM2·5), black carbon, and NO2 over the entire pregnancy on the basis of maternal address. Alu mutation was analysed with a linear regression model, and methylation values of the selected genes were analysed in mixed-effects models. Effect estimates are presented as the relative percentage change in methylation for an ambient air pollution increment of one IQR (ie, the difference between the first and third quartiles of exposure in the entire cohort). FINDINGS: 500 biobanked placental DNA samples were randomly selected from 814 pairs of mothers and neonates who were recruited to the cohort between Feb 1, 2010, and Dec 31, 2014, of which 463 samples met the pyrosequencing quality control criteria. IQR exposure increments were 3·84 μg/m3 for PM2·5, 0·36 μg/m3 for black carbon, and 5·34 μg/m3 for NO2. Among these samples, increased Alu mutation rate was associated with greater exposure to PM2·5 (r=0·26, p<0·0001) and black carbon (r=0·33, p<0·0001), but not NO2. Promoter methylation was positively associated with PM2·5 in APEX1 (7·34%, 95% CI 0·52 to 14·16, p=0·009), OGG1 (13·06, 3·88 to 22·24, p=0·005), ERCC4 (16·31%, 5·43 to 27·18, p=0·01), and p53 (10·60%, 4·46 to 16·74, p=0·01), whereas promoter methylation of DAPK1 (-12·92%, -22·35 to -3·49, p=0·007) was inversely associated with PM2·5 exposure. Black carbon exposure was associated with elevated promoter methylation in APEX1 (9·16%, 4·06 to 14·25, p=0·01) and ERCC4 (27·56%, 17·58 to 37·55, p<0·0001). Promoter methylation was not associated with pollutant exposure in PARP1 and ERCC1, and NO2 exposure was not associated with methylation in any of the genes studied. INTERPRETATION: Transplacental in-utero exposure to particulate matter is associated with an increased overall placental mutation rate (as measured with Alu), which occurred in concert with epigenetic alterations in key DNA repair and tumour suppressor genes. Our results suggest that exposure to air pollution can induce changes to fetal and neonatal DNA repair capacity. Future studies will be essential to elucidate whether these changes persist and have a role in carcinogenic insults later in life. The work is supported by the European Research Council (ERC-2012-StG.310898 and ERC-2011-StG. 282413) and by the Flemish Scientific Fund (FWO,G073315N/G082317N)

    A Co-expression Analysis of the Placental Transcriptome in Association With Maternal Pre-pregnancy BMI and Newborn Birth Weight

    Get PDF
    Maternal body mass index (BMI) before pregnancy is known to affect both fetal growth and later-life health of the newborn, yet the implicated molecular mechanisms remain largely unknown. As the master regulator of the fetal environment, the placenta is a valuable resource for the investigation of processes involved in the developmental programming of metabolic health. We conducted a genome-wide placental transcriptome study aiming at the identification of functional pathways representing the molecular link between maternal BMI and fetal growth. We used RNA microarray (Agilent 8 × 60 K), medical records, and questionnaire data from 183 mother-newborn pairs from the ENVIRONAGE birth cohort study (Flanders, Belgium). Using a weighted gene co-expression network analysis, we identified 17 correlated gene modules. Three of these modules were associated with both maternal pre-pregnancy BMI and newborn birth weight. A gene cluster enriched for genes involved in immune response and myeloid cell differentiation was positively associated with maternal BMI and negatively with low birth weight. Two other gene modules, upregulated in association with maternal BMI as well as birth weight, were involved in processes related to organ and tissue development, with blood vessel morphogenesis and extracellular matrix structure as top Gene Ontology terms. In line with this, erythrocyte-, angiogenesis-, and extracellular matrix-related genes were among the identified hub genes. The association between maternal BMI and newborn weight was significantly mediated by gene expression for 5 of the hub genes (FZD4, COL15A1, GPR124, COL6A1, and COL1A1). As some of the identified hub genes have been linked to obesity in adults, our observation in placental tissue suggests that biological processes may be affected from prenatal life onwards, thereby identifying new molecular processes linking maternal BMI and fetal metabolic programming

    Rhinitis associated with asthma is distinct from rhinitis alone: TARIA‐MeDALL hypothesis

    Get PDF
    Asthma, rhinitis, and atopic dermatitis (AD) are interrelated clinical phenotypes that partly overlap in the human interactome. The concept of “one-airway-one-disease,” coined over 20 years ago, is a simplistic approach of the links between upper- and lower-airway allergic diseases. With new data, it is time to reassess the concept. This article reviews (i) the clinical observations that led to Allergic Rhinitis and its Impact on Asthma (ARIA), (ii) new insights into polysensitization and multimorbidity, (iii) advances in mHealth for novel phenotype definitions, (iv) confirmation in canonical epidemiologic studies, (v) genomic findings, (vi) treatment approaches, and (vii) novel concepts on the onset of rhinitis and multimorbidity. One recent concept, bringing together upper- and lower-airway allergic diseases with skin, gut, and neuropsychiatric multimorbidities, is the “Epithelial Barrier Hypothesis.” This review determined that the “one-airway-one-disease” concept does not always hold true and that several phenotypes of disease can be defined. These phenotypes include an extreme “allergic” (asthma) phenotype combining asthma, rhinitis, and conjunctivitis.info:eu-repo/semantics/publishedVersio

    Cabbage and fermented vegetables : From death rate heterogeneity in countries to candidates for mitigation strategies of severe COVID-19

    Get PDF
    Large differences in COVID-19 death rates exist between countries and between regions of the same country. Some very low death rate countries such as Eastern Asia, Central Europe, or the Balkans have a common feature of eating large quantities of fermented foods. Although biases exist when examining ecological studies, fermented vegetables or cabbage have been associated with low death rates in European countries. SARS-CoV-2 binds to its receptor, the angiotensin-converting enzyme 2 (ACE2). As a result of SARS-CoV-2 binding, ACE2 downregulation enhances the angiotensin II receptor type 1 (AT(1)R) axis associated with oxidative stress. This leads to insulin resistance as well as lung and endothelial damage, two severe outcomes of COVID-19. The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is the most potent antioxidant in humans and can block in particular the AT(1)R axis. Cabbage contains precursors of sulforaphane, the most active natural activator of Nrf2. Fermented vegetables contain many lactobacilli, which are also potent Nrf2 activators. Three examples are: kimchi in Korea, westernized foods, and the slum paradox. It is proposed that fermented cabbage is a proof-of-concept of dietary manipulations that may enhance Nrf2-associated antioxidant effects, helpful in mitigating COVID-19 severity.Peer reviewe

    Nrf2-interacting nutrients and COVID-19 : time for research to develop adaptation strategies

    Get PDF
    There are large between- and within-country variations in COVID-19 death rates. Some very low death rate settings such as Eastern Asia, Central Europe, the Balkans and Africa have a common feature of eating large quantities of fermented foods whose intake is associated with the activation of the Nrf2 (Nuclear factor (erythroid-derived 2)-like 2) anti-oxidant transcription factor. There are many Nrf2-interacting nutrients (berberine, curcumin, epigallocatechin gallate, genistein, quercetin, resveratrol, sulforaphane) that all act similarly to reduce insulin resistance, endothelial damage, lung injury and cytokine storm. They also act on the same mechanisms (mTOR: Mammalian target of rapamycin, PPAR gamma:Peroxisome proliferator-activated receptor, NF kappa B: Nuclear factor kappa B, ERK: Extracellular signal-regulated kinases and eIF2 alpha:Elongation initiation factor 2 alpha). They may as a result be important in mitigating the severity of COVID-19, acting through the endoplasmic reticulum stress or ACE-Angiotensin-II-AT(1)R axis (AT(1)R) pathway. Many Nrf2-interacting nutrients are also interacting with TRPA1 and/or TRPV1. Interestingly, geographical areas with very low COVID-19 mortality are those with the lowest prevalence of obesity (Sub-Saharan Africa and Asia). It is tempting to propose that Nrf2-interacting foods and nutrients can re-balance insulin resistance and have a significant effect on COVID-19 severity. It is therefore possible that the intake of these foods may restore an optimal natural balance for the Nrf2 pathway and may be of interest in the mitigation of COVID-19 severity

    Extracellular Vesicles: How the External and Internal Environment Can Shape Cell-To-Cell Communication

    No full text
    To summarize the scientific evidence regarding the effects of environmental exposures on extracellular vesicle (EV) release and their contents. As environmental exposures might influence the aging phenotype in a very strict way, we will also report the role of EVs in the biological aging process.status: publishe

    Determinants of placental iodine concentrations in a mild-to-moderate iodine-deficient population: an ENVIRONAGE cohort study.

    No full text
    Iodine is an essential trace element for the production of thyroid hormones, and plays a key role during the gestational period for optimal foetal growth and (neuro-)development. To this day, iodine deficiency remains a global burden. Previous studies indicate that the placenta can store iodine in a concentration-dependent manner and serve as a long-term storage supply, but studies on the determinants of long-term placental iodine load are limited. The placental iodine concentrations were determined for 462 mother-neonate pairs from the ENVIRONAGE birth cohort (Limburg, Belgium). Sociodemographic and clinical variables were obtained from questionnaires and medical files. Determinants of placental iodine concentration were identified using stepwise multiple regression procedures (p value < 0.15). The biological significance of our findings was investigated by measuring the plasma thyroid hormones in maternal and cord blood of 378 participants. A higher pre-pregnancy BMI, higher gestational weight gain, and alcohol consumption during pregnancy were linked with lower placental iodine storage. Multi-vitamin supplementation during pregnancy and longer gestation were associated with higher levels of placental iodine. Children born during the winter period had on average higher placental iodine levels. Besides, we found a significant positive time trend for placental iodine load over the study period 2013 to 2017. Lastly, we observed positive associations of both the maternal and cord plasma thyroxine concentrations with placental iodine load, emphasizing their biological link. This study identified some determinants likely presenting a risk of reduced iodine storage during the gestational period of life. Future studies should elucidate the effects of lower placental iodine load on neonatal health, and health later in life

    Genome-wide microRNA expression analysis in human placenta reveals sex-specific patterns:an ENVIRONAGE birth cohort study

    No full text
    There is an increasing interest in microRNAs (miRNAs) as they are of utmost importance in gene regulation at the posttranscriptional level. Sex-related susceptibility for non-communicable diseases later in life could originate in early life. Until now, no data on sex-specific miRNA expression are available for the placenta. Therefore, we investigated the difference by sex of newborn's miRNA expression in human placental tissue. Within the ENVIRONAGE birth cohort, miRNA and mRNA expression profiling was performed in 60 placentae (50% boys) using Agilent (8 x 60 K) microarrays. The distribution of chromosome locations was studied and pathway analysis of the identified sex-specific miRNAs in the placenta was carried out. Of the total 2558 miRNAs on the array, 597 miRNAs were expressed in over 70% of the samples and were included for further analyses. A total of 142 miRNAs were significantly (FD

    A Co-expression Analysis of the Placental Transcriptome in Association With Maternal Pre-pregnancy BMI and Newborn Birth Weight

    No full text
    Maternal body mass index (BMI) before pregnancy is known to affect both fetal growth and later-life health of the newborn, yet the implicated molecular mechanisms remain largely unknown. As the master regulator of the fetal environment, the placenta is a valuable resource for the investigation of processes involved in the developmental programming of metabolic health. We conducted a genome-wide placental transcriptome study aiming at the identification of functional pathways representing the molecular link between maternal BMI and fetal growth. We used RNA microarray (Agilent 8 × 60 K), medical records, and questionnaire data from 183 mother-newborn pairs from the ENVIRONAGE birth cohort study (Flanders, Belgium). Using a weighted gene co-expression network analysis, we identified 17 correlated gene modules. Three of these modules were associated with both maternal pre-pregnancy BMI and newborn birth weight. A gene cluster enriched for genes involved in immune response and myeloid cell differentiation was positively associated with maternal BMI and negatively with low birth weight. Two other gene modules, upregulated in association with maternal BMI as well as birth weight, were involved in processes related to organ and tissue development, with blood vessel morphogenesis and extracellular matrix structure as top Gene Ontology terms. In line with this, erythrocyte-, angiogenesis-, and extracellular matrix-related genes were among the identified hub genes. The association between maternal BMI and newborn weight was significantly mediated by gene expression for 5 of the hub genes (FZD4, COL15A1, GPR124, COL6A1, and COL1A1). As some of the identified hub genes have been linked to obesity in adults, our observation in placental tissue suggests that biological processes may be affected from prenatal life onwards, thereby identifying new molecular processes linking maternal BMI and fetal metabolic programming.status: publishe
    corecore