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Maternal body mass index (BMI) before pregnancy is known to affect both fetal
growth and later-life health of the newborn, yet the implicated molecular mechanisms
remain largely unknown. As the master regulator of the fetal environment, the
placenta is a valuable resource for the investigation of processes involved in the
developmental programming of metabolic health. We conducted a genome-wide
placental transcriptome study aiming at the identification of functional pathways
representing the molecular link between maternal BMI and fetal growth. We used RNA
microarray (Agilent 8 × 60 K), medical records, and questionnaire data from 183 mother-
newborn pairs from the ENVIRONAGE birth cohort study (Flanders, Belgium). Using
a weighted gene co-expression network analysis, we identified 17 correlated gene
modules. Three of these modules were associated with both maternal pre-pregnancy
BMI and newborn birth weight. A gene cluster enriched for genes involved in immune
response and myeloid cell differentiation was positively associated with maternal
BMI and negatively with low birth weight. Two other gene modules, upregulated in
association with maternal BMI as well as birth weight, were involved in processes
related to organ and tissue development, with blood vessel morphogenesis and
extracellular matrix structure as top Gene Ontology terms. In line with this, erythrocyte-,
angiogenesis-, and extracellular matrix-related genes were among the identified hub
genes. The association between maternal BMI and newborn weight was significantly
mediated by gene expression for 5 of the hub genes (FZD4, COL15A1, GPR124,
COL6A1, and COL1A1). As some of the identified hub genes have been linked to obesity
in adults, our observation in placental tissue suggests that biological processes may be
affected from prenatal life onwards, thereby identifying new molecular processes linking
maternal BMI and fetal metabolic programming.
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INTRODUCTION

In 2016, 39% of the world’s adult population was overweight,
and 13% was obese (Abarca-Gómez et al., 2017). In the context
of fetal programming, it is well-accepted that an obesogenic
intrauterine environment has long-lasting effects on the fetus.
A high maternal body mass index (BMI) is a risk factor for
adverse birth outcomes and infant death (Aune et al., 2014;
Marchi et al., 2015), and offspring of obese mothers have a higher
risk of developing obesity, diabetes, and cardiovascular diseases
in later life (Gaillard, 2015).

Recent advances in molecular technologies suggest that the
placenta is the master regulator of the fetal environment,
representing a higher level of control of fetal programming
compared to other tissues (Konkel, 2016). The placenta plays a
critical role in nutrient and waste transfer, endocrine secretion,
immunological protection, and xenobiotic detoxification (Burton
et al., 2016). In addition, the placenta can undergo major
structural and functional adaptations in order to protect the
fetus from environmental stressors. However, if the organ’s
capacity for adaptation is exceeded or if placental function
is impaired, the intrauterine environment might be perturbed
and fetal development could be affected, with potential adverse
consequences for later-life health.

Despite the central role of the placenta in fetal programming,
only a limited number of studies have assessed the genome-
wide effect of maternal weight on the human placental
transcriptome (Saben et al., 2014; Altmäe et al., 2017). Studies
assessing placental transcriptome profiles related to fetal
growth mostly focused on intrauterine growth restriction
(Nishizawa et al., 2011; Madeleneau et al., 2015), often in
the context of pre-eclampsia (Kleinrouweler et al., 2013),
whereas genome-scale studies linking placental gene expression
with excessive fetal growth are scarce (Sabri et al., 2014;
Ahlsson et al., 2015; Sober et al., 2015; Song et al., 2018).
Most of the previous studies used a univariate differential
expression analysis approach, typically comparing a limited
number of adverse with normal phenotypes. Methods
taking into account the correlations between genes, such as
weighted gene co-expression network analysis (WGCNA)
(Zhao et al., 2010), have been proposed to facilitate the
identification of genes with similar functions, thereby providing
a systematic understanding of molecular mechanisms underlying
biological processes.

The identification of a placental gene expression signature
related to maternal BMI as well as fetal growth may provide
new insights into the molecular mechanisms underlying
the intrauterine programming of metabolic health. To
the best of our knowledge, no study so far has looked
at the overlap between placental transcriptome profiles
related to maternal pre-pregnancy BMI and fetal growth.
Using WGCNA, we identified placental co-expressed gene
modules and hub genes associated with both maternal
pre-pregnancy BMI and weight of the newborn and
we investigated whether these modules and hub genes
mediated the association between pre-pregnancy BMI
and newborn weight.

MATERIALS AND METHODS

Study Population
Within the framework of the ongoing Belgian birth cohort
ENVIRONAGE (ENVIRonmental influence ON early AGEing),
mother-newborn pairs were recruited upon arrival for delivery
at the East-Limburg Hospital in Genk, Flanders (Janssen
et al., 2017). Procedures were approved by the Ethical
Committee of Hasselt University and the East-Limburg Hospital
and recruitment was carried out according to the Helsinki
declaration. Mothers without a planned cesarean section and
who were able to fill out a questionnaire in Dutch, were eligible
for participation. For this study, we used a subsample of 195
mother-newborn pairs recruited between January 2014 and April
2017. Samples with missing covariate information (n = 5), a birth
weight below 1000 g (n = 1), or low quality of extracted RNA
(RNA integrity number below 6) (n = 6), were excluded from the
analysis, resulting in a final sample size of 183.

Information on variables such as gestational age, birth
weight, maternal pre-pregnancy weight, height, and weight
before delivery were retrieved from the medical records of the
hospital. Gestational age was estimated based on the mother’s last
menstrual period in combination with ultrasound data. Maternal
height and weight were measured at the first antenatal visit
(weeks 7–9 of gestation) wearing no shoes and light clothes.
Pre-pregnancy BMI was calculated as weight in kilograms
divided by the square of height in meters and categorized
into four groups: underweight (below 18.5 kg/m2), normal
weight (18.5–24.9 kg/m2), overweight (25.0–29.9 kg/m2), and
obese (30.0 kg/m2 or above). Maternal pregnancy weight gain
was calculated from the pre-pregnancy weight and the weight
measured on admission to the delivery ward. Low birth weight
was defined as a birth weight below the 10th percentile of the
sample (2643 g), and high birth weight as a birth weight above
the 90th percentile (3963 g).

Detailed information about socio-demographic and
lifestyle factors such as maternal age, smoking status during
pregnancy, parity, and newborn’s ethnicity were obtained
from questionnaires. Maternal smoking status was defined as
never smokers, past smokers (quit smoking cigarettes before
pregnancy), and current smokers (smoked cigarettes during
pregnancy). Parity was categorized into 1, 2, and ≥3 children.
Classification of ethnicity is based on the native country of
the neonates’ grandparents as either European (at least two
grandparents were European) or non-European (at least three
grandparents were of non-European origin).

Sample Collection and RNA Isolation
Placental tissue was collected within 1 h after delivery. Four
standardized biopsies were taken from the fetal side, at fixed
locations across the middle point of the placenta around 4 cm
distance from the umbilical cord (Janssen et al., 2017). The
collected biopsies were stored in RNA later (Thermo Fisher
Scientific, Waltham, MA, United States) at 4◦C for at least
12 h and maximally 24 h, followed by storage at −20◦C.
Total RNA was extracted from one placental tissue biopsy
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using the miRNeasy mini kit (Qiagen, Venlo, Netherlands)
according to the manufacturer’s protocol. RNase-Free DNase
treatment was performed on RNA samples according to
the manufacturer’s instructions (Qiagen, Venlo, Netherlands).
RNA quantity and purity was assessed by spectrophotometry
(Nanodrop 1000, Isogen Life Science, De Meern, Netherlands)
and RNA integrity by Agilent 2100 Bioanalyzer (Agilent
Technologies, Amstelveen, Netherlands).

Microarray Preparation, Hybridization,
and Preprocessing
0.2 µg total RNA was used to synthesize fluorescent cyanine-
3-labeled cRNA following the Agilent one-color Quick-Amp
labeling protocol (Agilent Technologies) and hybridized onto
Agilent Whole Human Genome 8 × 60 K microarrays.
Microarray signals were detected using the Agilent DNA G2505C
Microarray Scanner (Agilent Technologies). Scan images were
converted into TXT files using the Agilent Feature Extraction
Software (Version 10.7.3.1, Agilent Technologies, Amstelveen,
Netherlands). An in-house developed quality control pipeline
in R software was used to preprocess raw data as follows: local
background correction, omission of controls, flagging of bad
spots and spots with too low intensity, log2 transformation
and quantile normalization using arrayQC. More information
about the flagging and the R-scripts of the pipeline are available
at https://github.com/BiGCAT-UM/arrayQC_Module. Further
preprocessing included removal of probes showing > 30%
flagged data, merging of replicate probes based on the median,
and imputation of missing values by means of K-nearest neighbor
imputation (K = 15). Batch effects were corrected for by using
an empirical Bayes method (ComBat) (Johnson et al., 2007).
For genes with multiple probes, the probe with the largest
interquartile range was selected. From the resulting 18,847
probes, only those with expression levels above 6 (in the log2
scale) in a minimum of 30 samples were kept, leaving 14,040
genes for further analysis. Data are available via NCBI Gene
Expression Omnibus (GEO) with the Accession No. GSE128381.

Statistical Analysis
The association between maternal pre-pregnancy BMI (as a
continuous and as categorical variable) and birth weight was
assessed through a linear regression model adjusting for date of
delivery, newborn sex, gestational age, ethnicity, parity, maternal
age, maternal smoking, and weight gain during pregnancy.

First, we assessed the associations of transcripts levels (of
14,040 genes) with maternal pre-pregnancy BMI and with birth
weight using univariate models, correcting for the same variables
as above. We adjusted for multiple testing by controlling the
Benjamini–Hochberg false discovery rate (FDR) at 5%.

Then we constructed a gene co-expression network by
using the WGCNA package (Langfelder and Horvath, 2008)
in R, following the general WGCNA guidelines (Zhang and
Horvath, 2005). Briefly, pairwise Pearson correlation coefficients
between all (n = 14,040) genes were calculated to generate a
signed similarity. A weighted adjacency matrix was obtained
by raising the signed similarity matrix to a power β, which

was set to 14 after a sensitivity analysis of scale-free topology
(R2 > 0.9). The adjacency matrix was then converted to a
topological overlapping matrix (TOM) network, which was
used as input for a hierarchical clustering analysis. Finally,
modules were identified by implementing a dynamic tree cutting
algorithm on the TOM-based dendrogram, using the parameters
deepSplit = 2 and minClusterSize = 30. The resulting gene
clusters (modules) get a color name as identifier, with gray
denoting background genes outside of modules. The module
eigengene (ME), calculated as the eigenvector associated with
the first principal component of the expression matrix, serves
as a summary measure for the module. A cut height of 0.35
was used to merge modules with a correlation between MEs of
0.65 or greater.

To identify gene clusters associated with traits such as
maternal pre-pregnancy BMI, we used linear regression models
treating the MEs as dependent variables and the traits as
independent variables, correcting for the same variables as above.
Maternal BMI and newborn birth weight were modeled as
continuous and as categorical variables in order to capture
potential non-linear associations. Normal pre-pregnancy BMI
and normal birth weight were used as reference categories.
Regression coefficients were expressed as partial Pearson
correlations (with P-values), using the ppcor package in R (Kim,
2015). Modules of interest were those that were significantly
correlated with one of the maternal BMI variables (continuous
variable or one of the BMI categories) as well as with one of the
birth weight variables (continuous variable or low birth weight or
high birth weight). The P-value cut-off for selecting modules of
interest was set at 0.1.

Modules of interest were further characterized by
gene ontology (GO) and pathway enrichment analyses.
Overrepresented GO biological processes and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways
inside each module were identified by using WebGestalt
(Zhang et al., 2005; Wang et al., 2013), considering a
FDR < 0.05 as the criterion for statistical significance
after Benjamini–Hochberg correction for multiple testing.
The REVIGO tool (Supek et al., 2011) was used to filter
out redundant GO terms and to visualize enrichment
analysis results.

For the modules of interest, highly connected intramodular
genes (hub genes) related to maternal pre-pregnancy BMI
and birth weight were selected based on two criteria: (1)
the module membership (MM), calculated as the Pearson
correlation between the expression of a gene and the ME, and
(2) the significance of the partial Pearson correlations between
expression levels of individual genes and the traits of interest
[BMI, BMI categories (underweight, overweight, obese), birth
weight, birth weight categories (low and high birth weight)].
Partial Pearson correlations (with P-values) were obtained as
described for the MEs and were corrected for the same set of
variables. Hub genes were defined as genes with |MM| ≥ 0.8
and P < 0.05 for at least one maternal BMI variable and at
least one birth weight variable. In separate sensitivity analyses,
associations of traits of interest with MEs and hub genes were
tested after excluding non-European newborns (n = 26), mothers
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with gestational diabetes (n = 6), and mothers with gestational
hypertension (n = 8) from the study population.

To investigate expression of identified modules and genes as
a potential molecular link between maternal pre-pregnancy BMI
and newborn birth weight, we performed mediation analyses
with pre-pregnancy BMI as independent causal variable and birth
weight as outcome. The mediating effect of modules and hub
genes was tested using the default quasi-Bayesian Monte Carlo
method and bootstrap simulation (10000 simulations) from the
R mediation package (Tingley et al., 2014).

RESULTS

General characteristics of our study population (n = 183) are
provided in Table 1. 4.4% of the mothers was underweight, 26.2%
was overweight and 14.8% was obese before pregnancy. Our
study population included 24 (13.1%) preterm births (gestational
age below 37 weeks). Most of the low birth weight babies (16

TABLE 1 | Characteristics of study population (n = 183).

Characteristics Mean ± SD/frequency (%)

Mother

Age, years 29.9 ± 4.4

Pre-pregnancy BMI, kg/m2∗

25.0 ± 5.2

Underweight 8 (4.4)

Normal weight 100 (54.6)

Overweight 48 (26.2)

Obese 27 (14.8)

Gestational weight gain, kg 13.5 ± 5.7

Smoking status

Never-smoker 123 (67.2)

Past-smoker 46 (25.2)

Current smoker 14 (7.6)

Parity

1 89 (48.6)

2 71 (38.8)

≥3 23 (12.6)

Gestational diabetes 6 (3.3)

Gestational hypertension 8 (4.4)

Newborn

Boys 95 (51.9)

Gestational age, weeks 38.9 ± 2.1

Birth weight, g† 3,328 ± 532

Low 19 (10.0)

Normal 145 (80.0)

High 19 (10.0)

European ethnicity# 157 (85.8)

∗Pre-pregnancy BMI was coded as underweight (below 18.5 kg/m2),
normal weight (18.5–24.9 kg/m2), overweight (25.0–29.9 kg/m2), and obese
(30.0 kg/m2 or above). †Low birth weight was defined as a birth weight below the
10th percentile of the sample (<2643 g), normal weight as a birth weight between
the 10th and 90th percentile (2643–3963 g) and high birth weight as a birth weight
above the 90th percentile (>3963 g). #Newborns were classified as European when
at least two grandparents were European, and non-European when at least three
grandparents were of non-European origin.

out of 19) were preterm and all high birth weight babies had a
gestational age above 38 weeks. Our sample was representative
for all deliveries in Flanders (Cox et al., 2013) with respect to
newborn birth weight [average (10th–90th percentile) = 3328
(2643–3963) gram compared to 3360 (2740–3965) gram] and
characteristics such as maternal age, parity, sex, and ethnicity
(Supplementary Table S1).

A histogram of birth weight and a scatterplot of
birth weight versus maternal pre-pregnancy BMI with
unadjusted and adjusted regression lines are presented in
Supplementary Figure S1. Birth weight was positively associated
with maternal pre-pregnancy BMI and was estimated to be 13.3 g
(95% confidence interval [CI]: 3.0, 23.6 g) higher for a 1 kg/m2

higher maternal BMI. Compared with newborns of normal
weight mothers, birth weight of newborns from underweight
and overweight mothers was not significantly different (−46.7 g
[95% CI: −305.4, 212.0 g] and 54.6 g [95% CI: −68.4, 177.7 g],
respectively), but birth weight of those from obese mothers
was significantly higher (202.2 g, 95% CI: 45.4, 359.0 g). The
estimated increase in birth weight for a 1 kg increase in maternal
weight gain during pregnancy was 16.7 g (95% CI: 7.2, 26.2 g).

Univariate Models
In models assessing the associations between transcripts levels
and maternal pre-pregnancy BMI or birth weight, none of 14,040
genes survived Benjamini–Hochberg correction for multiple
testing. Unadjusted P-values for maternal BMI and birth weight
were < 0.05 for 832 and 745 genes respectively, with an
overlap of 101 genes (Supplementary Table S2). For all of the
overlapping genes, the direction of the association with maternal
BMI and with birth weight was consistent, with 75 of them
being upregulated in association with both variables and 26 being
downregulated in association with both.

Weighted Gene Co-expression Network
Analysis
Weighted gene co-expression network analysis identified 17
co-expressed gene modules (Supplementary Figure S2). The
gray module, consisting of genes not attributed to any module,
contained 9 genes. The size of other modules ranged from
48 to 5298 genes. A heatmap of the module-trait associations,
presenting the partial Pearson correlations between MEs and
traits, is shown in Figure 1. Modules found to be associated
(P < 0.1, corresponding to r ≥ 0.13) with at least one of the
maternal BMI variables and at least one of the birth weight
variables were darkgray (n = 69 genes), darkred (n = 1091 genes),
gray60 (n = 204 genes), and lightgreen (n = 451 genes). The
darkgray module showed a positive correlation with maternal
pre-pregnancy BMI (r = 0.15, P = 0.044) and a negative
correlation with low birth weight (r = −0.19, P = 0.011).
The darkred module was positively associated with maternal
BMI (r = 0.14, P = 0.077), with maternal obesity (r = 0.15,
P = 0.06), and with birth weight (r = 0.13, P = 0.098). Also
gray60 was positively associated with maternal BMI (r = 0.20,
P = 0.008), maternal obesity (r = 0.18, P = 0.015), and
birth weight (r = 0.14, P = 0.076). The lightgreen module
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FIGURE 1 | Associations between module eigengenes (ME, in rows) and traits (in columns). Colors indicate the strength and the direction of the correlation
according to the color legend. The numbers represent the partial Pearson correlations with corresponding P-values in parenthesis (only those with P < 0.1 are
shown). Partial correlations were obtained from models adjusted for date of delivery, newborn sex, gestational age, ethnicity, parity, maternal age, maternal smoking,
and weight gain during pregnancy. Modules found to be associated (P < 0.1, corresponding to r ≥ 0.13) with at least one of the maternal BMI variables and at least
one of the birth weight variables were darkgray, darkred, gray60, and lightgreen. As the correlations observed in the lightgreen module were driven by one specific
observation, only the darkgray, darkred, and gray60 modules were considered for further analyses.

showed a negative correlation with maternal underweight
(r = −0.13, P = 0.079), as well as with high birth weight
(r = −0.15, P = 0.056).

We checked the robustness of the above associations by
excluding underweight mothers with a high birth weight baby
(n = 1) and overweight mothers with a low birth weight baby
(n = 4) from the partial correlation analysis (our sample did
not contain obese mothers with a low birth weight baby). We
noticed that the correlations observed in the lightgreen module
were driven by the one underweight mother with a high birth
weight baby (both P > 0.1 after excluding this observation from
the analysis). Exclusion of this particular observation did not
alter the associations observed in the darkgray, darkred, and
gray60 modules, neither did the exclusion of the four overweight
mothers having a newborn with low birth weight. Consequently,
only the darkgray, darkred, and gray60 modules were considered
for further analyses.

GO and Pathway Enrichment Analyses
In the modules darkgray, darkred, and gray60, we found 7,
110, and 56 enriched GO biological processes (Supplementary
Table S3) and 0, 22, and 7 enriched KEGG pathways
(Supplementary Table S4), respectively. Redundant GO terms
were removed by REVIGO and results are summarized by
means of a treemap (Figure 2). The five non-redundant GO
biological processes in the darkgray module were response to

fungus, cell killing, modification of morphology or physiology
of other organism, myeloid cell differentiation, and response
to inorganic substance, but no enriched KEGG pathways
were found. The darkred and gray60 modules were close
to each other in the hierarchical clustering (Supplementary
Figure S2), which is reflected in the overlap in enriched
GO terms (28 common processes). Most of the biological
processes in the darkred module were related to organ and tissue
development (35 out of 76 enriched processes), with blood vessel
morphogenesis as top GO term (lowest FDR). The most enriched
KEGG pathway was vascular smooth muscle contraction, and
other pathways involved signal transduction (six pathways),
endocrine system (four pathways), cancer (three pathways),
and environmental adaptation (two pathways) (Figure 3).
Also in the gray60 module, the majority of GO biological
processes (37 out of 47) were related to organ and tissue
development, with extracellular structure organization as the
most enriched process. The gray60 module contained seven
enriched KEGG pathways, including PI3K-Akt signaling, focal
adhesion, protein digestion and absorption, and extracellular
matrix receptor interaction.

Intramodular Hub Genes
Hub genes for the modules of interest were selected according
to the criteria: |MM| ≥ 0.8 and significantly (P < 0.05)
correlated with at least one maternal BMI variable and at
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FIGURE 2 | Treemap of GO biological processes enriched in the placental microarray modules of interest. REVIGO was used to remove redundant GO terms and to
join the cluster representatives (the single rectangles) into superclusters (represented by different colors). The size of each rectangle reflects the FDR value of the GO
term (larger for lower FDR).
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FIGURE 3 | Treemap of KEGG pathways enriched in the placental microarray modules of interest. The KEGG hierarchy was used to join the pathways (the single
rectangles) into superclusters (represented by different colors). The size of each rectangle reflects the FDR value of the pathway (larger for lower FDR).
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TABLE 2 | Hub genes for the modules of interest, defined as |MM| ≥ 0.8 and a significant partial correlation with at least one maternal BMI variable and at least one birth
weight variable.

Partial correlation

Maternal pre-pregnancy Newborn

Gene symbol Gene name MM BMI Under weight Over weight Obese BW Low BW High
BW

Darkgray module

XLOC_000346 0.85 0.17∗
−0.02 0.02 0.16∗ 0.04 −0.16∗ 0.02

AHSP Alpha hemoglobin
stabilizing protein

0.88 0.17∗
−0.05 0.00 0.12 0.04 −0.18∗

−0.02

XLOC_013489 0.92 0.17∗
−0.01 0.01 0.14 0.02 −0.18∗

−0.05

SLC4A1 Solute carrier family
4 member 1 (Diego
blood group)

0.91 0.15∗
−0.04 −0.01 0.12 0.07 −0.19∗

−0.04

HBQ1 Hemoglobin
subunit theta 1

0.92 0.15∗
−0.02 −0.04 0.14 0.02 −0.20∗∗

−0.02

Darkred module

FZD4 Frizzled class
receptor 4

0.83 0.24∗∗
−0.03 0.10 0.25∗∗ 0.20∗∗

−0.06 0.05

CDC42EP2 CDC42 effector
protein 2

0.84 0.18∗
−0.10 0.07 0.15 0.16∗

−0.12 0.02

COL15A1 Collagen type XV
alpha 1 chain

0.84 0.18∗
−0.03 0.08 0.17∗ 0.20∗∗

−0.08 0.00

TBXA2R Thromboxane A2
receptor

0.81 0.18∗
−0.05 0.12 0.13 0.16∗

−0.02 0.04

EHD2 EH domain
containing 2

0.89 0.16∗
−0.04 0.04 0.18∗ 0.17∗

−0.03 0.03

GPR124 G-protein coupled
receptor 124

0.89 0.16∗ 0.00 0.05 0.18∗ 0.22∗∗
−0.05 0.04

VIM Vimentin 0.90 0.15∗
−0.03 0.12 0.16∗ 0.17∗

−0.05 0.04

EFEMP2 EGF containing
fibulin extracellular
matrix protein 2

0.88 0.15∗
−0.03 0.11 0.13 0.16∗

−0.06 0.04

TBX2 T-box 2 0.83 0.12 0.02 0.07 0.19∗ 0.18∗
−0.07 0.03

Gray60 module

COL8A2 Collagen type VIII
alpha 2 chain

0.88 0.24∗∗
−0.11 0.04 0.21∗∗ 0.16∗ 0.01 0.02

MATN2 Matrilin 2 0.86 0.24∗∗
−0.09 0.10 0.19∗ 0.18∗

−0.09 −0.01

KANK2 KN motif and
ankyrin repeat
domains 2

0.84 0.19∗
−0.10 0.04 0.18∗ 0.17∗

−0.05 0.01

COL6A1 Collagen type VI
alpha 1 chain

0.83 0.18∗
−0.07 0.06 0.18∗ 0.20∗∗

−0.07 0.04

TRPC1 Transient receptor
potential cation
channel subfamily
C member 1

0.81 0.18∗
− 0.19∗ 0.14 0.12 0.15∗

−0.12 −0.01

COL16A1 Collagen type XVI
alpha 1 chain

0.83 0.17∗
− 0.18∗

−0.02 0.13 0.17∗
−0.05 −0.04

COL3A1 Collagen type III
alpha 1 chain

0.83 0.17∗
−0.12 0.06 0.13 0.16∗

−0.13 −0.05

RUNX1T1 RUNX1
translocation
partner 1

0.86 0.16∗
−0.02 0.07 0.20∗∗ 0.18∗

−0.05 −0.03

AEBP1 AE binding protein
1

0.84 0.16∗
−0.08 0.03 0.18∗ 0.16∗

−0.08 −0.08

COL1A1 Collagen type I
alpha 1 chain

0.82 0.16∗
−0.09 0.08 0.12 0.22∗∗

−0.07 0.07

(Continued)
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TABLE 2 | Continued

Partial correlation

Maternal pre-pregnancy Newborn

Gene symbol Gene name MM BMI Under weight Over weight Obese BW Low BW High
BW

RGS11 Regulator of
G-protein signaling
11

0.81 0.13 −0.08 0.05 0.15∗ 0.24∗∗
−0.08 0.00

∗P-value of partial correlation < 0.05; ∗∗P-value of partial correlation < 0.01; MM, module membership; BW, birth weight.

least one birth weight variable (Table 2). Actual P-values of
the partial correlations with BMI and birth weight variables
are presented in Supplementary Table S5. In the darkgray
module, we found five hub genes positively correlated with
maternal BMI and negatively correlated with low birth weight:
XLOC_000346, AHSP, XLOC_013489, SLC4A1, and HBQ1.
The hub genes in the darkred module (FZD4, CDC42EP2,
COL15A1, TBXA2R, EHD2, GPR124, VIM, EFEMP2, and
TBX2) and in the gray60 module (COL8A2, MATN2, KANK2,
COL6A1, TRPC1, COL16A1, COL3A1, RUNX1T1, AEBP1,
COL1A1, and RGS11) showed a positive correlation with
maternal BMI and/or obesity, as well as with birth weight.
TRPC1 and COL16A1 in the gray60 module were also negatively
correlated with maternal underweight. Fourteen of these genes
(FZD4, COL15A1, TBXA2R, EHD2, GPR124, COL8A2, MATN2,
COL6A1, TRPC1, COL16A1, COL3A1, RUNX1T1, AEBP1,
and COL1A1) were also picked up in the univariate models
(unadjusted P-values for maternal BMI and birth weight < 0.05),
but FDR values were > 0.05.

Sensitivity Analyses
Associations between traits of interest and MEs or hub
genes were assessed after excluding non-European newborns
(Supplementary Table S6), mothers with gestational
diabetes (Supplementary Table S7), and mothers with
gestational hypertension (Supplementary Table S8) from
the analysis. Although some P-values for correlations
with MEs became larger than 0.1, correlation coefficients
changed only slightly and associations with hub genes
mostly remained significant (P < 0.05). The exclusion of
mothers with hypertension, however, resulted in smaller
and non-significant partial correlations with maternal
BMI in the darkgray module, both for the ME as for
the five hub genes.

Mediation Analyses
Finally we tested whether the identified modules and genes
mediated the association between maternal pre-pregnancy BMI
and newborn birth weight (Supplementary Table S9). Although
the indirect (mediating) effects of MEs were not significant, many
of the hub genes from the darkred and gray60 modules showed
some evidence for mediation (P-value of the indirect effect < 0.1).
The proportion of mediation (indirect effect/total effect) ranged
from 8.7 to 20.2% for hub genes from the darkred module and

from 10.3 to 17.0% for hub genes from the gray60 module.
Significant (P < 0.05) mediation was observed for five of these
genes: FZD4, COL15A1, GPR124, COL6A1, and COL1A1.

DISCUSSION

Using WGCNA as an alternative method to conventional
differential gene expression analyses, we found interesting
clusters of co-expressed genes and intramodular hub
genes in placental tissue that were correlated with both
maternal pre-pregnancy BMI and birth weight of the
newborns. Identified gene modules were mainly related
to the immune and vascular system, organ and tissue
development, and extracellular structure organization.
Mediation analyses suggested that identified genes may be
on the causal pathway of the association between maternal
BMI and newborn weight, with significant mediation effects
observed for five of the hub genes (FZD4, COL15A1, GPR124,
COL6A1, and COL1A1).

One of the modules (darkgray) was associated with maternal
pre-pregnancy BMI and with low birth weight [below the
10th percentile (2643 g)] and was enriched for genes involved
in the defense response to external stimuli. In adults, excess
adiposity has been linked to a reduced immune function
and host defense, possibly due to the obesity-associated low-
grade chronic inflammation and disturbed levels of circulating
nutrients and metabolic hormones (Milner and Beck, 2012).
Suboptimal fetal growth has been found to increase the risk of
infectious disease mortality in childhood (Ashworth, 1998), and
is associated with a reduced infant immune response to routine
vaccination (Obanewa and Newell, 2017). Alterations to the
hypothalamic–pituitary–adrenal axis, direct nutritional effects,
and an impaired transfer of immunity from mother to child
have been proposed as mechanisms by which prenatal nutritional
exposures may have a lasting impact on the development
of the immune system (Palmer, 2011). We also found an
enrichment of genes involved in myeloid cell differentiation
in the darkgray module, suggesting that maternal BMI might
alter immune function through alterations in hematopoietic cell
development. In line with this, a murine model has recently
shown that a maternal high fat diet restricts the expansion
and renewal of fetal hematopoietic stem cells, and promotes
differentiation of both lymphoid and myeloid cell lineages
(Kamimae-Lanning et al., 2015).
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AHSP, SLC4A1, and HBQ1 genes were identified as hub
genes in the darkgray module and were positively correlated
with pre-pregnancy BMI, and negatively with low birth
weight. AHSP acts as a chaperone to prevent the harmful
aggregation of alpha-hemoglobin during normal erythroid cell
development. SLC4A1 is expressed in the erythrocyte plasma
membrane and functions both as a transporter that mediates
electroneutral anion exchange across the cell membrane and
as a structural protein. HBQ1 is a hemoglobin gene found in
human fetal erythroid tissue. Although this is the first study
suggesting a role of these genes in developmental programming
by maternal BMI, studies on adults have demonstrated an
upregulation of these genes in association with BMI or
obesity in matrices such as adipose tissue (Poitou et al.,
2015), whole blood (SLC4A1) (Wang et al., 2017), peripheral
blood (AHSP) (Ghosh et al., 2010), and meniscus samples
(HBQ1) (Rai et al., 2014). In addition, AHSP and SLC4A1
expression has been found to be higher in placental tissue
of large-for-gestational-age infants (Ahlsson et al., 2015),
whereas decreased placental AHSP mRNA levels were found in
pregnancies complicated by low platelet syndrome, fetal death,
and intrauterine growth restriction (although not significant for
the latter) (Emanuelli et al., 2008).

The two other identified modules (darkred and gray60)
were positively correlated with maternal BMI, maternal obesity,
and birth weight. The correlation between these modules
(Pearson correlation between eigengenes = 0.648) is reflected
in the overlap in GO terms related to tissue and organ
development. The darkred module contained several vascular-
related genes, with blood vessel morphogenesis as top GO
term, and vascular smooth muscle contraction as top KEGG
pathway. Alterations in placental vasculature have an impact
on the exchange of nutrients and gasses between mother
and fetus, thereby affecting fetal growth. Animal models
suggest an increased placental nutrient transport capacity
as the mechanistic link between maternal obesity and fetal
overgrowth, whereas reduced vascular branching in placentas
with hypertensive disorders such as preeclampsia may be
an underlying mechanism restricting fetal growth in obese
pregnancies (Howell and Powell, 2017). In a RNA-sequencing
study on placenta from 24 subjects, maternal obesity increased
markers of inflammation and oxidative stress and decreased
regulators of angiogenesis (HIF-1α and VEGF-A) (Saben et al.,
2014). In a mouse model, however, maternal placental HIF-
1α protein was elevated by maternal obesity (Fernandez-Twinn
et al., 2017), supporting the hypothesis that obesity during
pregnancy is associated with placental hypoxia, resulting in
an induction of angiogenesis to enhance fetoplacental vascular
growth (Desoye, 2018).

Consistent with the functional enrichment analyses, we
identified hub genes related to blood vessel morphogenesis in
the darkred module: TBXA2R, FZD4, COL15A1, and TBX2 were
positively associated with maternal BMI and/or obesity and with
birth weight. TBXA2R is the receptor for Thromboxane A2
(TXA2), a marker of platelet activation that is greater in obese
than in lean subjects (Graziani et al., 2011). In line with this
is the upregulation of adipose tissue TBXA2R in obese mice,

with genetic models suggesting a role for TXA2 in modulating
peripheral tissue insulin sensitivity and adipose tissue fibrosis (Lei
et al., 2015). The role of TBXA2R in obese pregnancies, however,
is still unclear. It has recently been suggested that an impaired
vasoconstriction and vasodilatation in myometrial arteries from
obese women may be linked to increased TX2A levels, although
TBXA2R expression in endothelial and smooth muscle cells
was not affected by maternal BMI in that study (Hayward
et al., 2014). FZD4, a member of the frizzled gene family,
encodes a protein that acts as a receptor for wingless (Wnt)
proteins and plays an important role in retinal vascularization.
In male adults, hyperinsulinemia was found to be associated
with a decreased expression of Wnt signaling genes (including
FZD4) in adipose tissue, while expression was increased in
skeletal muscle, which might reflect a compensatory mechanism
to increase muscle glucose uptake and to generate new fat
cells (Karczewska-Kupczewska et al., 2016). Another hub gene
related to blood vessel morphogenesis, TBX2, is implicated in
developmental processes such as cell fate regulation, tissue and
organ morphogenesis (Abrahams et al., 2010). An upregulation
of this gene in association with BMI in adults has been
demonstrated (Wang et al., 2017), but the importance of this gene
in fetal metabolic programming needs further investigation.

Other identified hub genes in the darkred module were
EHD2, CDC42EP2, GPR124, VIM, and EFEMP2. EHD2 functions
in membrane trafficking between the plasma membrane and
endosomes, and has been associated with obesity in mice models
(Sonne et al., 2017). CDC42EP2 and VIM are involved in
maintaining cell shape and integrity by stabilizing cytoskeletal
interactions. VIM expression in islet cells is higher in type
2 diabetes (Roefs et al., 2017), although VIM protein levels
were lower in placenta from obese pregnant women with
normal glucose tolerance (Oliva et al., 2012). GPR124 controls
central nervous system angiogenesis and blood–brain barrier
integrity by promoting canonical Wnt signaling via FZD4 (Zhou
and Nathans, 2014). A recent study in mice suggests that
maternal obesity during pregnancy increases the permeability
of the blood–brain barrier, which might affect the postnatal
development of the hypothalamic circuits that regulate body
weight through excessive exposure to factors such as leptin
or ghrelin (Kim et al., 2016). Lastly, the EFEMP2 gene is
implicated in blood coagulation, activation of complement
and determination of cell fate during development, and has
been reported to be upregulated in adipose tissue of mice
(Mulder et al., 2016).

In line with our findings for the gray60 module, the PI3K-
Akt signaling and focal adhesion pathways were found to
be upregulated in the placenta of non-diabetic macrosomia
(Song et al., 2018). Altered maternal nutrient partitioning
and placental upregulation of metabolic signaling pathways,
including PI3K, have also been observed in obese mice (Sferruzzi-
Perri et al., 2013). Extracellular structure organization was the
most enriched biological process in the gray60 module. The
extracellular matrix (ECM) plays a crucial role in adipocyte
development and function. Instability of the ECM may be a direct
consequence of adipocyte overgrowth, or may indirectly result
from obesity-associated hypoxia (Mariman and Wang, 2010).
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Several studies have reported an increase in gene expression
of collagens, growth factors, and enzymatic regulators of the
skeletal muscle ECM in obesity (Martinez-Huenchullan et al.,
2017). In line with this, maternal obesity has been found to
enhance collagen accumulation and cross-linking in skeletal
muscle of ovine offspring (Huang et al., 2012). Although this
is the first study to report an upregulation of collagen genes in
association with maternal BMI in the placenta, a thickening of
the trophoblastic basement membrane with increasing amounts
of collagen has been demonstrated in the context of maternal
diabetes (Vambergue and Fajardy, 2011). In pre-eclamptic
placentas, collagen genes have been found to be downregulated
(He et al., 2015).

An advantage of our data analysis approach is that
WGCNA is a method that takes into account the correlation
between genes. WGCNA clusters highly co-expressed genes
into modules of conserved biological function (Zhao et al.,
2010). In addition, it quantifies the extent to which genes
share the same neighbors, allowing the identification of highly
connected genes inside each module. Because of their key
position inside the network, such hub genes are likely to
be biomarkers of a specific phenotype or disease status.
Another strength of this study is the availability of placental
microarray data from a relatively large study population
that is representative for the gestational segment of the
population at large (Janssen et al., 2017). In contrast to
typical transcriptome studies contrasting an often limited
number of adverse (e.g., obese or macrosomic) and normal
phenotypes, our study results reflect normal variations in
maternal and newborn traits. However, a small variation
in phenotypic traits is likely to result in rather modest
differences in gene expression, which may explain the absence
of significant differentially expressed genes after multiple testing
correction in the univariate models. Nevertheless, using a co-
expression analysis, we were able to pick up dysregulated
gene networks and hub genes associated with such subtle
differences in maternal BMI and newborn weight. By focusing
on groups of coordinately expressed genes, WGCNA has
the advantage of heavily reducing the number of multiple
comparisons and providing a functional interpretation that is
biologically significant.

As in all epidemiological studies, findings of this study do
not necessarily reflect causal associations. Observed alterations
in expression of some genes may be due to confounding
factors that also correlate with transcript variability. However,
in contrast to most studies using WGCNA, associations between
expression levels (of modules and genes) and phenotypic traits
were corrected for potential confounders such as ethnicity,
maternal smoking, and gestational weight gain. In addition,
the placenta represents a heterogeneous mixture of cells
and expression levels are expected to vary between cell
types. Although biopsies were taken at a fixed location
at the fetal side using a standardized sampling method,
residual confounding by cell composition cannot be ruled
out completely. Finally, associations observed between low
birth weight and (hub genes inside) the darkgray module
should be interpreted with caution because of the low

number (n = 19) of observations inside the low birth
weight category.

CONCLUSION

Using a co-expression approach, we identified pivotal placental
gene clusters that may shed new light on the molecular link
between maternal and offspring metabolic health. Interestingly,
this study indicated genes involved in immune defense and
erythrocyte-related hub genes to be upregulated in association
with maternal pre-pregnancy BMI and downregulated in
association with low birth weight. Moreover, modules enriched
for developmental, vascular, and extracellular matrix-related
genes were positively correlated with maternal BMI and birth
weight. Given the critical role of the placenta in regulating
gestational development and the intrauterine environment, the
identified gene networks may reflect molecular mechanisms
underlying placental dysfunction associated with BMI and may
be involved in fetal metabolic programming.
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