6 research outputs found
Newly Diagnosed IDH-Wildtype Glioblastoma and Temporal Muscle Thickness: A Multicenter Analysis
Background: Reduced temporal muscle thickness (TMT) has been discussed as a prognostic marker in IDH-wildtype glioblastoma. This retrospective multicenter study was designed to investigate whether TMT is an independent prognostic marker in newly diagnosed glioblastoma. Methods: TMT was retrospectively measured in 335 patients with newly diagnosed glioblastoma between 1 January 2014 and 31 December 2019 at the University Hospitals of Leipzig and Rostock. The cohort was dichotomized by TMT and tested for association with overall survival (OS) after 12 months by multivariate proportional hazard calculation. Results: TMT of 7.0 mm or more was associated with increased OS (46.3 ± 3.9% versus 36.6 ± 3.9%, p > 0.001). However, the sub-groups showed significant epidemiological differences. In multivariate proportional hazard calculation, patient age (HR 1.01; p = 0.004), MGMT promoter status (HR 0.76; p = 0.002), EOR (HR 0.61), adjuvant irradiation (HR 0.24) and adjuvant chemotherapy (HR 0.40; all p < 0.001) were independent prognostic markers for OS. However, KPS (HR 1.00, p = 0.31), BMI (HR 0.98, p = 0.11) and TMT (HR 1.06; p = 0.07) were not significantly associated with OS. Conclusion: TMT has not appeared as a statistically independent prognostic marker in this cohort of patients with newly diagnosed IDH-wildtype glioblastoma
Newly Diagnosed IDH-Wildtype Glioblastoma and Temporal Muscle Thickness: A Multicenter Analysis
Background: Reduced temporal muscle thickness (TMT) has been discussed as a prognostic marker in IDH-wildtype glioblastoma. This retrospective multicenter study was designed to investigate whether TMT is an independent prognostic marker in newly diagnosed glioblastoma. Methods: TMT was retrospectively measured in 335 patients with newly diagnosed glioblastoma between 1 January 2014 and 31 December 2019 at the University Hospitals of Leipzig and Rostock. The cohort was dichotomized by TMT and tested for association with overall survival (OS) after 12 months by multivariate proportional hazard calculation. Results: TMT of 7.0 mm or more was associated with increased OS (46.3 ± 3.9% versus 36.6 ± 3.9%, p > 0.001). However, the sub-groups showed significant epidemiological differences. In multivariate proportional hazard calculation, patient age (HR 1.01; p = 0.004), MGMT promoter status (HR 0.76; p = 0.002), EOR (HR 0.61), adjuvant irradiation (HR 0.24) and adjuvant chemotherapy (HR 0.40; all p < 0.001) were independent prognostic markers for OS. However, KPS (HR 1.00, p = 0.31), BMI (HR 0.98, p = 0.11) and TMT (HR 1.06; p = 0.07) were not significantly associated with OS. Conclusion: TMT has not appeared as a statistically independent prognostic marker in this cohort of patients with newly diagnosed IDH-wildtype glioblastoma
Newly Diagnosed IDH-Wildtype Glioblastoma and Temporal Muscle Thickness: A Multicenter Analysis
Background: Reduced temporal muscle thickness (TMT) has been discussed as a prognostic marker in IDH-wildtype glioblastoma. This retrospective multicenter study was designed to investigate whether TMT is an independent prognostic marker in newly diagnosed glioblastoma. Methods: TMT was retrospectively measured in 335 patients with newly diagnosed glioblastoma between 1 January 2014 and 31 December 2019 at the University Hospitals of Leipzig and Rostock. The cohort was dichotomized by TMT and tested for association with overall survival (OS) after 12 months by multivariate proportional hazard calculation. Results: TMT of 7.0 mm or more was associated with increased OS (46.3 ± 3.9% versus 36.6 ± 3.9%, p > 0.001). However, the sub-groups showed significant epidemiological differences. In multivariate proportional hazard calculation, patient age (HR 1.01; p = 0.004), MGMT promoter status (HR 0.76; p = 0.002), EOR (HR 0.61), adjuvant irradiation (HR 0.24) and adjuvant chemotherapy (HR 0.40; all p < 0.001) were independent prognostic markers for OS. However, KPS (HR 1.00, p = 0.31), BMI (HR 0.98, p = 0.11) and TMT (HR 1.06; p = 0.07) were not significantly associated with OS. Conclusion: TMT has not appeared as a statistically independent prognostic marker in this cohort of patients with newly diagnosed IDH-wildtype glioblastoma
Newly Diagnosed IDH-Wildtype Glioblastoma and Temporal Muscle Thickness: A Multicenter Analysis
Background: Reduced temporal muscle thickness (TMT) has been discussed as a prognostic marker in IDH-wildtype glioblastoma. This retrospective multicenter study was designed to investigate whether TMT is an independent prognostic marker in newly diagnosed glioblastoma. Methods: TMT was retrospectively measured in 335 patients with newly diagnosed glioblastoma between 1 January 2014 and 31 December 2019 at the University Hospitals of Leipzig and Rostock. The cohort was dichotomized by TMT and tested for association with overall survival (OS) after 12 months by multivariate proportional hazard calculation. Results: TMT of 7.0 mm or more was associated with increased OS (46.3 ± 3.9% versus 36.6 ± 3.9%, p > 0.001). However, the sub-groups showed significant epidemiological differences. In multivariate proportional hazard calculation, patient age (HR 1.01; p = 0.004), MGMT promoter status (HR 0.76; p = 0.002), EOR (HR 0.61), adjuvant irradiation (HR 0.24) and adjuvant chemotherapy (HR 0.40; all p < 0.001) were independent prognostic markers for OS. However, KPS (HR 1.00, p = 0.31), BMI (HR 0.98, p = 0.11) and TMT (HR 1.06; p = 0.07) were not significantly associated with OS. Conclusion: TMT has not appeared as a statistically independent prognostic marker in this cohort of patients with newly diagnosed IDH-wildtype glioblastoma
Identification of infants with increased type 1 diabetes genetic risk for enrollment into Primary Prevention Trials-GPPAD-02 study design and first results
Primary prevention of type 1 diabetes (T1D) requires intervention in genetically at-risk infants. The Global Platform for the Prevention of Autoimmune Diabetes (GPPAD) has established a screening program, GPPAD-02, that identifies infants with a genetic high risk of T1D, enrolls these into primary prevention trials, and follows the children for beta-cell autoantibodies and diabetes. Genetic testing is offered either at delivery, together with the regular newborn testing, or at a newborn health care visits before the age of 5 months in regions of Germany (Bavaria, Saxony, Lower Saxony), UK (Oxford), Poland (Warsaw), Belgium (Leuven), and Sweden (Region Skåne). Seven clinical centers will screen around 330 000 infants. Using a genetic score based on 46 T1D susceptibility single-nucleotide polymorphisms (SNPs) or three SNPS and a first-degree family history for T1D, infants with a high (>10%) genetic risk for developing multiple beta-cell autoantibodies by the age of 6 years are identified. Screening from October 2017 to December 2018 was performed in 50 669 infants. The prevalence of high genetic risk for T1D in these infants was 1.1%. Infants with high genetic risk for T1D are followed up and offered to participate in a randomized controlled trial aiming to prevent beta-cell autoimmunity and T1D by tolerance induction with oral insulin. The GPPAD-02 study provides a unique path to primary prevention of beta-cell autoimmunity in the general population. The eventual benefit to the community, if successful, will be a reduction in the number of children developing beta-cell autoimmunity and T1D.status: publishe