44 research outputs found

    FLASH Knockdown Sensitizes Cells To Fas-Mediated Apoptosis via Down-Regulation of the Anti-Apoptotic Proteins, MCL-1 and Cflip Short

    Get PDF
    FLASH (FLICE-associated huge protein or CASP8AP2) is a large multifunctional protein that is involved in many cellular processes associated with cell death and survival. It has been reported to promote apoptosis, but we show here that depletion of FLASH in HT1080 cells by siRNA interference can also accelerate the process. As shown previously, depletion of FLASH halts growth by down-regulating histone biosynthesis and arrests the cell cycle in S-phase. FLASH knockdown followed by stimulating the cells with Fas ligand or anti-Fas antibodies was found to be associated with a more rapid cleavage of PARP, accelerated activation of caspase-8 and the executioner caspase-3 and rapid progression to cellular disintegration. As is the case for most anti-apoptotic proteins, FLASH was degraded soon after the onset of apoptosis. Depletion of FLASH also resulted in the reduced intracellular levels of the anti-apoptotic proteins, MCL-1 and the short isoform of cFLIP. FLASH knockdown in HT1080 mutant cells defective in p53 did not significantly accelerate Fas mediated apoptosis indicating that the effect was dependent on functional p53. Collectively, these results suggest that under some circumstances, FLASH suppresses apoptosis

    Diagnostic performance of artificial intelligence for histologic melanoma recognition compared to 18 international expert pathologists: Supplementary Material

    No full text
    The study was designed to compare the performance of classifiers based on image analyses by convolutionnal neural networks (CNNs) with that of 18 expert dermatopathologists in a binary classification task for pigmented skin lesions. Mendeley Supplementary Figure 1 shows a schematic representation of the testing approach. The CNNs were trained by cross-testing. Each iteration consists of five folds. Orange rectangles represent the folds used for testing and blue rectangles represent folds for training. For each iteration a CNN is trained and tested on the respective folds. Each trained CNN has a performance that is determined on the fold. To calculate the overall performance, the sum of all 5 performances is taken. This procedure was repeated 3 times and the results were combined to generate an ensemble. Mendeley Supplementary Figure 2 depicts the whole slide image (WSI) analysis. Tissue sections on whole slide images (top) were divided into tiles (middle). The CNN (a pre-trained ResNeXt50) assigned a malignancy score to every individual tile (bottom). Red tiles were classified as melanoma, blue tiles as nevus. Scores for all tiles on one image were averaged to a final malignancy score for the complete slide. Supplementary Table 1 shows the characteristics of the pigmented skin lesions included in the test set. Supplementary Table 2 provides an analysis of statistical differences between the performance of pathologists and CNN classifiers

    Evaluating deep learning-based melanoma classification using immunohistochemistry and routine histology: A three center study.

    No full text
    Pathologists routinely use immunohistochemical (IHC)-stained tissue slides against MelanA in addition to hematoxylin and eosin (H&E)-stained slides to improve their accuracy in diagnosing melanomas. The use of diagnostic Deep Learning (DL)-based support systems for automated examination of tissue morphology and cellular composition has been well studied in standard H&E-stained tissue slides. In contrast, there are few studies that analyze IHC slides using DL. Therefore, we investigated the separate and joint performance of ResNets trained on MelanA and corresponding H&E-stained slides. The MelanA classifier achieved an area under receiver operating characteristics curve (AUROC) of 0.82 and 0.74 on out of distribution (OOD)-datasets, similar to the H&E-based benchmark classification of 0.81 and 0.75, respectively. A combined classifier using MelanA and H&E achieved AUROCs of 0.85 and 0.81 on the OOD datasets. DL MelanA-based assistance systems show the same performance as the benchmark H&E classification and may be improved by multi stain classification to assist pathologists in their clinical routine

    Additional results derived by using different fusion approaches: Dist-opt means weighted by the distance to the individual models optimal thresholds; dist-05 means weighted by the distance to the default threshold of 0.5; avg denotes the fusion by conducting a simple average of all scores; perf means weighted based on the individual models validation performance in a way that better performing models contribute more to the fused result.

    No full text
    Additional results derived by using different fusion approaches: Dist-opt means weighted by the distance to the individual models optimal thresholds; dist-05 means weighted by the distance to the default threshold of 0.5; avg denotes the fusion by conducting a simple average of all scores; perf means weighted based on the individual models validation performance in a way that better performing models contribute more to the fused result.</p

    Schematic diagram of the different models.

    No full text
    The red box shows the pipeline for MelanA-stained WSIs and the purple box the pipeline for H&E-stained WSIs. We tessellated MelanA-stained WSIs corresponding to different magnifications and trained individual models on each tile size. The class probabilities for each tile were predicted and aggregated into a slide score by averaging all tile scores. For the H&E-based model we proceeded in the same way.</p

    Description of the population in our datasets.

    No full text
    For continuous features we report median, range, and number of NAs, for categorical features we report the total number of observations per group. Here the training population as well as all three test populations are described. Melanoma in situ describes the early stage of a malignant melanoma that has not yet broken through the basement membrane. However, features at the cellular level do not differ between melanoma in situ and malignant melanoma.</p
    corecore