6 research outputs found

    Influence of Defined Hydrophilic Blocks within Oligoaminoamide Copolymers: Compaction versus Shielding of pDNA Nanoparticles

    Get PDF
    Cationic polymers are promising components of the versatile platform of non-viral nucleic acid (NA) delivery agents. For a successful gene delivery system, these NA vehicles need to comprise several functionalities. This work focuses on the modification of oligoaminoamide carriers with hydrophilic oligomer blocks mediating nanoparticle shielding potential, which is necessary to prevent aggregation or dissociation of NA polyplexes in vitro, and hinder opsonization with blood components in vivo. Herein, the shielding agent polyethylene glycol (PEG) in three defined lengths (12, 24, or 48 oxyethylene repeats) is compared with two peptidic shielding blocks composed of four or eight repeats of sequential proline-alanine-serine (PAS). With both types of shielding agents, we found opposing effects of the length of hydrophilic segments on shielding and compaction of formed plasmid DNA (pDNA) nanoparticles. Two-arm oligoaminoamides with 37 cationizable nitrogens linked to 12 oxyethylene units or four PAS repeats resulted in very compact 40-50 nm pDNA nanoparticles, whereas longer shielding molecules destabilize the investigated polyplexes. Thus, the balance between sufficiently shielded but still compact and stable particles can be considered a critical optimization parameter for non-viral nucleic acid vehicles based on hydrophilic-cationic block oligomers

    Electrochemotherapy and IL-12 for mast cell tumours

    No full text
    Electrochemotherapy combined with peritumoral interleukin-12 (IL-12) gene electrotransfer was used for treatment of mast cell tumours in 18 client-owned dogs. Local tumour control, recurrence rate, as well as safety of combined therapy were evaluated. One month after the therapy, no side effects were recorded and good local tumour control was observed with high complete responses rate which even increased during the observation period to 72%. IL-12 gene electrotransfer resulted in 78% of patients with detectable serum IFN-Îł and/or IL-12 levels. In the treated tumours vascular changes as well as minimal T-lymphocytes infiltration was observed. After 1 week, the plasmid DNA was not detected intra- or peritumorally and no horizontal gene transfer was observed. In summary, our study demonstrates high antitumour efficacy of electrochemotherapy combined with IL-12 electrotransfer, which also prevented recurrences or distant metastases, as well as its safety and feasibility in treatment of canine mast cell tumours

    Solid-phase supported design of carriers for therapeutic nucleic acid delivery

    No full text
    corecore