2,443 research outputs found

    Interacting particles at a metal-insulator transition

    Full text link
    We study the influence of many-particle interaction in a system which, in the single particle case, exhibits a metal-insulator transition induced by a finite amount of onsite pontential fluctuations. Thereby, we consider the problem of interacting particles in the one-dimensional quasiperiodic Aubry-Andre chain. We employ the density-matrix renormalization scheme to investigate the finite particle density situation. In the case of incommensurate densities, the expected transition from the single-particle analysis is reproduced. Generally speaking, interaction does not alter the incommensurate transition. For commensurate densities, we map out the entire phase diagram and find that the transition into a metallic state occurs for attractive interactions and infinite small fluctuations -- in contrast to the case of incommensurate densities. Our results for commensurate densities also show agreement with a recent analytic renormalization group approach.Comment: 8 pages, 8 figures The original paper was splitted and rewritten. This is the published version of the DMRG part of the original pape

    Two-Body B Meson Decays to η\eta and η\eta^{'} -- Observation of BηB\to \eta{'}K$

    Full text link
    In a sample of 6.6 million produced B mesons we have observed decays B -> eta' K, with branching fractions BR(B+ -> eta' K+ = 6.5 +1.5 -1.4 +- 0.9) x 10510^{-5} and BR(B0 -> eta' K0 = 4.7 +2.7 -2.0 +- 0.9) x 10510^{-5}. We have searched with comparable sensitivity for 17 related decays to final states containing an eta or eta' meson accompanied by a single particle or low-lying resonance. Our upper limits for these constrain theoretical interpretations of the B -> eta' K signal.Comment: 12 page postscript file, postscript file also available through http://w4.lns.cornell.edu/public/CLN

    Azimuthal single- and double-spin asymmetries in semi-inclusive deep-inelastic lepton scattering by transversely polarized protons

    Get PDF
    A comprehensive set of azimuthal single-spin and double-spin asymmetries in semi-inclusive leptoproduction of pions, charged kaons, protons, and antiprotons from transversely polarized protons is presented. These asymmetries include the previously published HERMES results on Collins and Sivers asymmetries, the analysis of which has been extended to include protons and antiprotons and also to an extraction in a three-dimensional kinematic binning and enlarged phase space. They are complemented by corresponding results for the remaining four single-spin and four double-spin asymmetries allowed in the one-photon-exchange approximation of the semi-inclusive deep-inelastic scattering process for target-polarization orientation perpendicular to the direction of the incoming lepton beam. Among those results, significant non-vanishing cos (phi-phi(S)) modulations provide evidence for a sizable worm-gear (II) distribution, g(1T)(q) (x, p(T)(2)). Most of the other modulations are found to be consistent with zero with the notable exception of large sin (phi(S)) modulations for charged pions and K+

    The Interaction of N-Acylhomoserine Lactone Quorum Sensing Signaling Molecules with Biological Membranes: Implications for Inter-Kingdom Signaling

    Get PDF
    The long chain N-acylhomoserine lactone (AHL) quorum sensing signal molecules released by Pseudomonas aeruginosa have long been known to elicit immunomodulatory effects through a process termed inter-kingdom signaling. However, to date very little is known regarding the exact mechanism of action of these compounds on their eukaryotic targets.The use of the membrane dipole fluorescent sensor di-8-ANEPPS to characterise the interactions of AHL quorum sensing signal molecules, N-(3-oxotetradecanoyl)-L-homoserine lactone (3-oxo-C14-HSL), N-(3-oxododecanoyl)homoserine-L-lactone (3-oxo-C12-HSL) and N-(3-oxodecanoyl) homoserine-L-lactone (3-oxo-C10 HSL) produced by Pseudomonas aeruginosa with model and cellular membranes is reported. The interactions of these AHLs with artificial membranes reveal that each of the compounds is capable of membrane interaction in the micromolar concentration range causing significant modulation of the membrane dipole potential. These interactions fit simple hyperbolic binding models with membrane affinity increasing with acyl chain length. Similar results were obtained with T-lymphocytes providing the evidence that AHLs are capable of direct interaction with the plasma membrane. 3-oxo-C12-HSL interacts with lymphocytes via a cooperative binding model therefore implying the existence of an AHL membrane receptor. The role of cholesterol in the interactions of AHLs with membranes, the significance of modulating cellular dipole potential for receptor conformation and the implications for immune modulation are discussed.Our observations support previous findings that increasing AHL lipophilicity increases the immunomodulatory activity of these quorum compounds, while providing evidence to suggest membrane interaction plays an important role in quorum sensing and implies a role for membrane microdomains in this process. Finally, our results suggest the existence of a eukaryotic membrane-located system that acts as an AHL receptor

    Standardized research protocols enable transdisciplinary research of climate variation impacts in corn production systems

    Get PDF
    The important questions about agriculture, climate, and sustainability have become increasingly complex and require a coordinated, multifaceted approach for developing new knowledge and understanding. A multistate, transdisciplinary project was begun in 2011 to study the potential for both mitigation and adaptation of corn-based cropping systems to climate variations. The team is measuring the baseline as well as change of the system\u27s carbon (C), nitrogen (N), and water footprints, crop productivity, and pest pressure in response to existing and novel production practices. Nine states and 11 institutions are participating in the project, necessitating a well thought out approach to coordinating field data collection procedures at 35 research sites. In addition, the collected data must be brought together in a way that can be stored and used by persons not originally involved in the data collection, necessitating robust procedures for linking metadata with the data and clearly delineated rules for use and publication of data from the overall project. In order to improve the ability to compare data across sites and begin to make inferences about soil and cropping system responses to climate across the region, detailed research protocols were developed to standardize the types of measurements taken and the specific details such as depth, time, method, numbers of samples, and minimum data set required from each site. This process required significant time, debate, and commitment of all the investigators involved with field data collection and was also informed by the data needed to run the simulation models and life cycle analyses. Although individual research teams are collecting additional measurements beyond those stated in the standardized protocols, the written protocols are used by the team for the base measurements to be compared across the region. A centralized database was constructed to meet the needs of current researchers on this project as well as for future use for data synthesis and modeling for agricultural, ecosystem, and climate sciences

    Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead.

    Get PDF
    Lifestyle factors are responsible for a considerable portion of cancer incidence worldwide, but credible estimates from the World Health Organization and the International Agency for Research on Cancer (IARC) suggest that the fraction of cancers attributable to toxic environmental exposures is between 7% and 19%. To explore the hypothesis that low-dose exposures to mixtures of chemicals in the environment may be combining to contribute to environmental carcinogenesis, we reviewed 11 hallmark phenotypes of cancer, multiple priority target sites for disruption in each area and prototypical chemical disruptors for all targets, this included dose-response characterizations, evidence of low-dose effects and cross-hallmark effects for all targets and chemicals. In total, 85 examples of chemicals were reviewed for actions on key pathways/mechanisms related to carcinogenesis. Only 15% (13/85) were found to have evidence of a dose-response threshold, whereas 59% (50/85) exerted low-dose effects. No dose-response information was found for the remaining 26% (22/85). Our analysis suggests that the cumulative effects of individual (non-carcinogenic) chemicals acting on different pathways, and a variety of related systems, organs, tissues and cells could plausibly conspire to produce carcinogenic synergies. Additional basic research on carcinogenesis and research focused on low-dose effects of chemical mixtures needs to be rigorously pursued before the merits of this hypothesis can be further advanced. However, the structure of the World Health Organization International Programme on Chemical Safety 'Mode of Action' framework should be revisited as it has inherent weaknesses that are not fully aligned with our current understanding of cancer biology
    corecore