40 research outputs found

    Brain changes after learning to read and play music

    Get PDF
    Musically naive participants were scanned before and after a period of 15 weeks during which they were taught to read music and play the keyboard. When participants played melodies from musical notation after training, activation was seen in a cluster of voxels within the bilateral superior parietal cortex. A subset of these voxels were activated in a second experiment in which musical notation was present, but irrelevant for task performance. These activations suggest that music reading involves the automatic sensorimotor translation of a spatial code (written music) into a series of motor responses (keypresses)

    Protocol for the EARCO Registry : a pan-European observational study in patients with α1-antitrypsin deficiency

    Get PDF
    Rationale and objectives Alpha-1 antitrypsin deficiency (AATD) is a genetic condition that leads to an increased risk of emphysema and liver disease. Despite extensive investigation, there remain unanswered questions concerning the natural history, pathophysiology, genetics and the prognosis of the lung disease in association with AATD. The European Alpha-1 Clinical Research Collaboration (EARCO) is designed to bring together researchers from European countries and to create a standardised database for the follow-up of patients with AATD. Study design and population The EARCO Registry is a non-interventional, multicentre, pan-European, longitudinal observational cohort study enrolling patients with AATD. Data will be collected prospectively without interference/modification of patient's management by the study team. The major inclusion criterion is diagnosed severe AATD, defined by an AAT serum level <11 µM (50 mg·dL−1) and/or a proteinase inhibitor genotype ZZ, SZ or compound heterozygotes or homozygotes of other rare deficient variants. Assessments at baseline and during the yearly follow-up visits include lung function testing (spirometry, body plethysmography and diffusing capacity of the lung), exercise capacity, blood tests and questionnaires (symptoms, quality of life and physical activity). To ensure correct data collection, there will be designated investigator staff to document the data in the case report form. All data will be reviewed by the EARCO database manager. Summary The EARCO Registry aims to understand the natural history and prognosis of AATD better with the goal to create and validate prognostic tools to support medical decision-making

    Mechanisms of Myocardial Ischemia in Hypertrophic Cardiomyopathy : Insights From Wave Intensity Analysis and Magnetic Resonance

    Get PDF
    Background: Angina is common in hypertrophic cardiomyopathy (HCM) and is associated with abnormal myocardial perfusion. Wave intensity analysis improves the understanding of the mechanics of myocardial ischemia. Objectives: Wave intensity analysis was used to describe the mechanisms underlying perfusion abnormalities in patients with HCM. Methods: Simultaneous pressure and flow were measured in the proximal left anterior descending artery in 33 patients with HCM and 20 control patients at rest and during hyperemia, allowing calculation of wave intensity. Patients also underwent quantitative first-pass perfusion cardiac magnetic resonance to measure myocardial perfusion reserve. Results: Patients with HCM had a lower coronary flow reserve than control subjects (1.9 ± 0.8 vs. 2.7 ± 0.9; p = 0.01). Coronary hemodynamics in HCM were characterized by a very large backward compression wave during systole (38 ± 11% vs. 21 ± 6%; p < 0.001) and a proportionately smaller backward expansion wave (27% ± 8% vs. 33 ± 6%; p = 0.006) compared with control subjects. Patients with severe left ventricular outflow tract obstruction had a bisferiens pressure waveform resulting in an additional proximally originating deceleration wave during systole. The proportion of waves acting to accelerate coronary flow increased with hyperemia, and the magnitude of change was proportional to the myocardial perfusion reserve (rho = 0.53; p < 0.01). Conclusions: Coronary flow in patients with HCM is deranged. Distally, compressive deformation of intramyocardial blood vessels during systole results in an abnormally large backward compression wave, whereas proximally, severe left ventricular outflow tract obstruction is associated with an additional deceleration wave. Perfusion abnormalities in HCM are not simply a consequence of supply/demand mismatch or remodeling of the intramyocardial blood vessels; they represent a dynamic interaction with the mechanics of myocardial ischemia that may be amenable to treatment

    Communication in the Third Dimension: Song Perch Height of Rivals Affects Singing Response in Nightingales

    Get PDF
    Many animals use long-range signals to compete over mates and resources. Optimal transmission can be achieved by choosing efficient signals, or by choosing adequate signalling perches and song posts. High signalling perches benefit sound transmission and reception, but may be more risky due to exposure to airborne predators. Perch height could thus reflect male quality, with individuals signalling at higher perches appearing as more threatening to rivals. Using playbacks on nightingales (Luscinia megarhynchos), we simulated rivals singing at the same height as residents, or singing three metres higher. Surprisingly, residents increased song output stronger, and, varying with future pairing success, overlapped more songs of the playback when rivals were singing at the same height than when they were singing higher. Other than expected, rivals singing at the same height may thus be experienced as more threatening than rivals singing at higher perches. Our study provides new evidence that territorial animals integrate information on signalling height and thus on vertical cues in their assessment of rivals

    Kinematic Plasticity during Flight in Fruit Bats: Individual Variability in Response to Loading

    Get PDF
    All bats experience daily and seasonal fluctuation in body mass. An increase in mass requires changes in flight kinematics to produce the extra lift necessary to compensate for increased weight. How bats modify their kinematics to increase lift, however, is not well understood. In this study, we investigated the effect of a 20% increase in mass on flight kinematics for Cynopterus brachyotis, the lesser dog-faced fruit bat. We reconstructed the 3D wing kinematics and how they changed with the additional mass. Bats showed a marked change in wing kinematics in response to loading, but changes varied among individuals. Each bat adjusted a different combination of kinematic parameters to increase lift, indicating that aerodynamic force generation can be modulated in multiple ways. Two main kinematic strategies were distinguished: bats either changed the motion of the wings by primarily increasing wingbeat frequency, or changed the configuration of the wings by increasing wing area and camber. The complex, individual-dependent response to increased loading in our bats points to an underappreciated aspect of locomotor control, in which the inherent complexity of the biomechanical system allows for kinematic plasticity. The kinematic plasticity and functional redundancy observed in bat flight can have evolutionary consequences, such as an increase potential for morphological and kinematic diversification due to weakened locomotor trade-offs

    The effect of climate change on avian offspring production: A global meta-analysis

    Get PDF
    Climate change affects timing of reproduction in many bird species, but few studies have investigated its influence on annual reproductive output. Here, we assess changes in the annual production of young by female breeders in 201 populations of 104 bird species (N = 745,962 clutches) covering all continents between 1970 and 2019. Overall, average offspring production has declined in recent decades, but considerable differences were found among species and populations. A total of 56.7% of populations showed a declining trend in offspring production (significant in 17.4%), whereas 43.3% exhibited an increase (significant in 10.4%). The results show that climatic changes affect offspring production through compounded effects on ecological and life history traits of species. Migratory and larger-bodied species experienced reduced offspring production with increasing temperatures during the chick-rearing period, whereas smaller-bodied, sedentary species tended to produce more offspring. Likewise, multi-brooded species showed increased breeding success with increasing temperatures, whereas rising temperatures were unrelated to repro- ductive success in single-brooded species. Our study suggests that rapid declines in size of bird populations reported by many studies from different parts of the world are driven only to a small degree by changes in the production of young

    Hemodynamics and endothelial cell biology in cardiovascular diseases

    No full text
    Atherosclerotic plaques develop preferentially in curved and branching arteries in-vivo. Lipids and inflammatory cells accumulation in the intimal layer of the arterial wall is considered as the main driving mechanism in the disease progression. Evidences suggest that this focal distribution of plaques may result from the combination of systemic risk factors including high plasma cholesterol, smoking, diabetis, hypertension or genetic pre-disposition and local hemodynamic risk factors such as low and oscillatory flows. The exact mechanism of the biological and biomechanical interactions between the endothelium, blood flow and the growing lesion underneath still remains unclear. This thesis is a study on the relationship between biomechanical factors found in proatherogenic flow and endothelial inflammation. The thesis focuses in particular on the effect of secondary flows on wall shear stress and mass transport distribution. To that end, we have combined different techniques from flow imaging, 3D flow reconstruction, vascular biology and mathematical simulation of biological network. In particular, shear stress is involved in the regulation of the pro-inflammatory transcription factor nuclear factor -kB (NF-kB) and the vasoregulator Nitric Oxide. The role of endothelial Nitric Oxide and wall shear stress on NF-kB activation is still controversial. We investigated here the hypothesis that NO negatively regulates NF- kB activation in flow chamber with sheared endothelial cells and using a mathematical model of the NF-kB-NO pathway. Understanding the underlying relationship between hemodynamic factors and inflammatory cells transport to the wall may contribute to the development of better therapies or interventional practices to treat patients with atherosclerotic diseases.EThOS - Electronic Theses Online ServiceJapanese Society for the Promotion of ScienceGBUnited Kingdo

    Shear stress biology of the endothelium

    No full text
    The relationships between blood flow, mechanotransduction, and the localization of arterial lesions can now be advanced by the incorporation of new technologies and the refinement of existing methods in imaging modalities, computational modeling, fluid dynamics, and high throughput genomics and proteomics. When combined with traditional cell and molecular technologies, a powerful palette of investigative approaches is available to address shear stress biology of the endothelium at levels extending from nanoscale subcellular detailed mechanistic responses through to higher organizational levels of regional endothelial phenotypes and heterogeneous vascular bed

    Magnetic anisotropies of ultrathin Co(001) films on Cu(001)

    No full text
    corecore