285 research outputs found

    Toward Tissue-Like Material Properties: Inducing In Situ Adaptive Behavior in Fibrous Hydrogels

    Get PDF
    Contains fulltext : 282418.pdf (Publisher’s version ) (Open Access

    Pattern classification based on the amygdala does not predict an individual's response to emotional stimuli

    Get PDF
    Functional magnetic resonance imaging (fMRI) studies have often recorded robust univariate group effects in the amygdala of subjects exposed to emotional stimuli. Yet it is unclear to what extent this effect also holds true when multi-voxel pattern analysis (MVPA) is applied at the level of the individual participant. Here we sought to answer this question. To this end, we combined fMRI data from two prior studies (N = 112). For each participant, a linear support vector machine was trained to decode the valence of emotional pictures (negative, neutral, positive) based on brain activity patterns in either the amygdala (primary region-of-interest analysis) or the whole-brain (secondary exploratory analysis). The accuracy score of the amygdala-based pattern classifications was statistically significant for only a handful of participants (4.5%) with a mean and standard deviation of 37% ± 5% across all subjects (range: 28–58%; chance-level: 33%). In contrast, the accuracy score of the whole-brain pattern classifications was statistically significant in roughly half of the participants (50.9%), and had an across-subjects mean and standard deviation of 49% ± 6% (range: 33–62%). The current results suggest that the information conveyed by the emotional pictures was encoded by spatially distributed parts of the brain, rather than by the amygdala alone, and may be of particular relevance to studies that seek to target the amygdala in the treatment of emotion regulation problems, for example via real-time fMRI neurofeedback training.publishedVersio

    Effects of Multisession Transcranial Direct Current Stimulation on Stress Regulation and Emotional Working Memory: A Randomized Controlled Trial in Healthy Military Personnel

    Get PDF
    Objectives: Top-down stress regulation, important for military operational performance and mental health, involves emotional working memory and the dorsolateral prefrontal cortex (DLPFC). Multisession transcranial direct current stimulation (tDCS) applied over the DLPFC during working memory training has been shown to improve working memory performance. This study tested the hypothesis that combined tDCS with working memory training also improves top-down stress regulation. However, tDCS response differs between individuals. Resting-state electrophysiological brain activity was post hoc explored as a possible predictor of tDCS response. The predictive value of the ratio between slow-wave theta oscillations and fast-wave beta oscillations (theta/beta ratio) was examined, together with the previously identified tDCS response predictors age, education, and baseline working memory performance. Materials and Methods: Healthy military service members (n = 79) underwent three sessions of real or sham tDCS over the right DLPFC (anode: F4, cathode: behind C2) at 2 mA for 20 minutes during emotional working memory training (N-back task). At baseline and within a week after the tDCS training sessions, stress regulation was assessed by fear-potentiated startle responses and subjective fear in a threat-of-shock paradigm with instructed emotional downregulation. Results were analyzed in generalized linear mixed-effects models. Results: Threat-of-shock responses and emotional working memory performance showed no significant group-level effects of the real vs sham tDCS training intervention (p > 0.07). In contrast, when considering baseline theta/beta ratios or the other tDCS response predictors, exploratory results showed a trait-dependent beneficial effect of tDCS on emotional working memory training performance during the first session (p < 0.01). Conclusions: No evidence was found for effectivity of the tDCS training intervention to improve stress regulation in healthy military personnel. The emotional working memory training results emphasize the importance of studying the effects of tDCS in relation to individual differences. Clinical Trial Registration: This study was preregistered on September 16, 2019, at the Netherlands Trial Register (www.trialregister.nl) with ID: NL8028

    Can percolation theory explain the gelation behavior of diblock copolymer worms?

    Get PDF
    It is well known that polymerization-induced self-assembly (PISA) offers an efficient synthetic route for the production of highly anisotropic diblock copolymer worms. When prepared in aqueous media, such worms form thermoresponsive free-standing hydrogels that are (i) readily sterilizable, (ii) can act as a 3D matrix for the culture of normal mammalian cells and (iii) can induce stasis in human stem cell colonies. Herein we critically examine the gelation behavior of two types of diblock copolymer worms in terms of recent advances in percolation theory for rigid rods, which explicitly account for the effect of rod length polydispersity. More specifically, we use small-angle X-ray scattering (SAXS) to determine the weight-average worm contour length, Lw, and the mean worm cross-sectional radius, R. This approach enables a direct comparison to be made between the theoretical critical worm volume fraction, Ď•c, required for gelation and the experimental values indicated by rheological measurements and tube inversion experiments. Given that these diblock copolymer worms are relatively flexible rather than truly rod-like, reasonably good agreement between these two parameters is observed, particularly for shorter, relatively stiff worms. For longer, more flexible worms a proportionality constant of approximately two is required to reconcile theory with experimental values for Ď•c. These findings are expected to have important implications for the aqueous gelation behavior exhibited by various other anisotropic nanoparticles, such as cellulose nanocrystals and semicrystalline block copolymer rods, and also fibril-forming small molecule (e.g. dipeptide) gelators

    Thermo-responsive Diblock Copolymer Worm Gels in Non-polar Solvents

    Get PDF
    Benzyl methacrylate (BzMA) is polymerized using a poly(lauryl methacrylate) macromolecular chain transfer agent (PLMA macro-CTA) using reversible addition–fragmentation chain transfer (RAFT) polymerization at 70 °C in n-dodecane. This choice of solvent leads to an efficient dispersion polymerization, with polymerization-induced self-assembly (PISA) occurring via the growing PBzMA block to produce a range of PLMA–PBzMA diblock copolymer nano-objects, including spheres, worms, and vesicles. In the present study, particular attention is paid to the worm phase, which forms soft free-standing gels at 20 °C due to multiple inter-worm contacts. Such worm gels exhibit thermo-responsive behavior: heating above 50 °C causes degelation due to the onset of a worm-to-sphere transition. Degelation occurs because isotropic spheres interact with each other much less efficiently than the highly anisotropic worms. This worm-to-sphere thermal transition is essentially irreversible on heating a dilute solution (0.10% w/w) but is more or less reversible on heating a more concentrated dispersion (20% w/w). The relatively low volatility of n-dodecane facilitates variable-temperature rheological studies, which are consistent with eventual reconstitution of the worm phase on cooling to 20 °C. Variable-temperature 1H NMR studies conducted in d26-dodecane confirm partial solvation of the PBzMA block at elevated temperature: surface plasticization of the worm cores is invoked to account for the observed change in morphology, because this is sufficient to increase the copolymer curvature and hence induce a worm-to-sphere transition. Small-angle X-ray scattering and TEM are used to investigate the structural changes that occur during the worm-to-sphere-to-worm thermal cycle; experiments conducted at 1.0 and 5.0% w/w demonstrate the concentration-dependent (ir)reversibility of these morphological transitions

    Polymerization-Induced Self-Assembly of Block Copolymer Nano-objects via RAFT Aqueous Dispersion Polymerization

    Get PDF
    In this Perspective, we discuss the recent development of polymerization-induced self-assembly mediated by reversible addition–fragmentation chain transfer (RAFT) aqueous dispersion polymerization. This approach has quickly become a powerful and versatile technique for the synthesis of a wide range of bespoke organic diblock copolymer nano-objects of controllable size, morphology, and surface functionality. Given its potential scalability, such environmentally-friendly formulations are expected to offer many potential applications, such as novel Pickering emulsifiers, efficient microencapsulation vehicles, and sterilizable thermo-responsive hydrogels for the cost-effective long-term storage of mammalian cells
    • …
    corecore